EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hands on Applied Finite Element Analysis

Download or read book Hands on Applied Finite Element Analysis written by Mehmet Ali Arslan and published by . This book was released on 2018-03 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to equip, undergraduate/graduate students and professionals, who are craving to start up or enhance their learning with hands-on experience in solving real-life Finite Element Analysis (FEA) problems. This textbook is specially designed for mechanical, aeronautical, mechatronics, biomedical (i.e. orthopedics and dental studies), geotechnics and civil engineering students who are focusing on stress/strain analysis, heat transfer, and vibration characteristics of the problem of their interest. At the same time, this book may also serve the students from different backgrounds, who have a common or special interest in FEA.

Book Applied Finite Element Analysis

Download or read book Applied Finite Element Analysis written by Larry J. Segerlind and published by John Wiley & Sons. This book was released on 1976 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook for senior/graduate couses in finite element analysis taught in all engineering departments. Covers the basic concepts of the finite element method and their application to the analysis of plane structures and two-dimensional continuum problems in heat transfer, irrotational fluid flow, and elasticity. This revised edition includes a reorganization of topics and an increase in the number of homework problems. The emphasis on numerical illustrations make topis clear without heavy use of sophisticated mathematics.

Book Applied Finite Element Analysis

Download or read book Applied Finite Element Analysis written by G. Ramamurty and published by I. K. International Pvt Ltd. This book was released on 2010 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for presenting the basic concepts of Finite Element Analysis applied to several engineering applications. Salient Features: 1. Covers several modules of elasticity, heat conduction, eigenvalue and fluid flow analysis which are necessary for a student of Mechanical Engineering. 2. Finite Element formulations have been presented using both global and natural coordinates. It is important for providing smooth transition from formulation in global coordinates to natural coordinates. 3. Special focus has been given to heat conduction problems and fluid flows which are not sufficiently discussed in other textbooks. 4. Important factors affecting the formulation have been included as Miscellaneous Topics. 5. Many examples have been worked out in order to highlight the applications of Finite Element Analysis.

Book Practical Finite Element Analysis

Download or read book Practical Finite Element Analysis written by Nitin S. Gokhale and published by FINITE TO INFINITE. This book was released on 2008 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.

Book Applied Finite Element Analysis for Engineers

Download or read book Applied Finite Element Analysis for Engineers written by Frank L. Stasa and published by Oxford University Press, USA. This book was released on 1985 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing how one applies FEM to practical engineering problems, this text provides a thorough introduction to the methods of finite analysis and applies these methods to problems of stress analysis, thermal analysis, fluid flow analysis, and lubrication.

Book Applied Finite Element Methods

    Book Details:
  • Author : John Clayton
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2018-06-28
  • ISBN : 9781721867462
  • Pages : 214 pages

Download or read book Applied Finite Element Methods written by John Clayton and published by Createspace Independent Publishing Platform. This book was released on 2018-06-28 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary purpose of this work is to serve as lecture notes for a first university course on the finite element method. The target student is a first-year graduate student in engineering or engineering mechanics. Senior undergraduate students may also find the material accessible. A secondary purpose is to serve as a desktop reference and learning tool for practicing engineers. Chapter 1 introduces basic concepts and terminology. Chapter 2 is focused on one-dimensional finite element analysis in engineering mechanics: truss and bar elements. Chapter 3 considers two- and three-dimensional problems involving beam and frame elements. Chapter 4 addresses planar problems in continuum elasticity and heat transfer. Chapter 5 covers axisymmetric analysis of static problems in the same subjects. Chapter 6 describes dynamic or time-dependent analysis. Each main chapter besides the first contains example problems solved analytically or numerically via use of the ANSYS software package. This publication emerged out of lecture notes used in a one-semester course on Applied Finite Element Methods at the A. James Clark School of Engineering at the University of Maryland, College Park, Maryland, USA. Content consists of course notes, computer examples, and problem sets converted to manuscript format. As such, the presentation in much of the book is informal, and figures, while adequate for the current purpose, have not been professionally rendered.

Book Advanced Finite Element Methods with Applications

Download or read book Advanced Finite Element Methods with Applications written by Thomas Apel and published by Springer. This book was released on 2019-06-28 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.

Book The Mathematical Theory of Finite Element Methods

Download or read book The Mathematical Theory of Finite Element Methods written by Susanne Brenner and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

Book Basic Finite Element Method as Applied to Injury Biomechanics

Download or read book Basic Finite Element Method as Applied to Injury Biomechanics written by King-Hay Yang and published by Academic Press. This book was released on 2017-09-22 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Finite Element Method as Applied to Injury Biomechanics provides a unique introduction to finite element methods. Unlike other books on the topic, this comprehensive reference teaches readers to develop a finite element model from the beginning, including all the appropriate theories that are needed throughout the model development process. In addition, the book focuses on how to apply material properties and loading conditions to the model, how to arrange the information in the order of head, neck, upper torso and upper extremity, lower torso and pelvis and lower extremity. The book covers scaling from one body size to the other, parametric modeling and joint positioning, and is an ideal text for teaching, further reading and for its unique application to injury biomechanics. With over 25 years of experience of developing finite element models, the author's experience with tissue level injury threshold instead of external loading conditions provides a guide to the "do’s and dont's" of using finite element method to study injury biomechanics. Covers the fundamentals and applications of the finite element method in injury biomechanics Teaches readers model development through a hands-on approach that is ideal for students and researchers Includes different modeling schemes used to model different parts of the body, including related constitutive laws and associated material properties

Book Finite Element Method

Download or read book Finite Element Method written by Michael R. Gosz and published by CRC Press. This book was released on 2017-03-27 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method (FEM) is the dominant tool for numerical analysis in engineering, yet many engineers apply it without fully understanding all the principles. Learning the method can be challenging, but Mike Gosz has condensed the basic mathematics, concepts, and applications into a simple and easy-to-understand reference. Finite Element Method: Applications in Solids, Structures, and Heat Transfer navigates through linear, linear dynamic, and nonlinear finite elements with an emphasis on building confidence and familiarity with the method, not just the procedures. This book demystifies the assumptions made, the boundary conditions chosen, and whether or not proper failure criteria are used. It reviews the basic math underlying FEM, including matrix algebra, the Taylor series expansion and divergence theorem, vectors, tensors, and mechanics of continuous media. The author discusses applications to problems in solid mechanics, the steady-state heat equation, continuum and structural finite elements, linear transient analysis, small-strain plasticity, and geometrically nonlinear problems. He illustrates the material with 10 case studies, which define the problem, consider appropriate solution strategies, and warn against common pitfalls. Additionally, 35 interactive virtual reality modeling language files are available for download from the CRC Web site. For anyone first studying FEM or for those who simply wish to deepen their understanding, Finite Element Method: Applications in Solids, Structures, and Heat Transfer is the perfect resource.

Book The Finite Element Method

Download or read book The Finite Element Method written by Bofang Zhu and published by John Wiley & Sons. This book was released on 2018-03-12 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how the fundamentals of the FEM can be applied in other disciplines. Researchers and graduate students studying hydraulic, mechanical and civil engineering will find it a practical reference text.

Book The Finite Element Method  Theory  Implementation  and Applications

Download or read book The Finite Element Method Theory Implementation and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Book The Finite Element Method for Boundary Value Problems

Download or read book The Finite Element Method for Boundary Value Problems written by Karan S. Surana and published by CRC Press. This book was released on 2016-11-17 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.

Book Finite Element Methods and Their Applications

Download or read book Finite Element Methods and Their Applications written by Zhangxin Chen and published by Springer Science & Business Media. This book was released on 2005-06-23 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.

Book Least Squares Finite Element Methods

Download or read book Least Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.

Book The Finite Element Method for Elliptic Problems

Download or read book The Finite Element Method for Elliptic Problems written by P.G. Ciarlet and published by Elsevier. This book was released on 1978-01-01 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author’s experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on “Additional Bibliography and Comments should provide many suggestions for conducting seminars.

Book The Finite Element Method and Applications in Engineering Using ANSYS

Download or read book The Finite Element Method and Applications in Engineering Using ANSYS written by Erdogan Madenci and published by Springer Science & Business Media. This book was released on 2007-04-26 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This user-friendly book provides the reader with a theoretical and practical knowledge of the finite element method (FEM) and with the skills required to analyze engineering problems with ANSYS®. A self-contained, introductory text, it minimizes the need for additional reference material, covering the fundamental topics in FEM as well as advanced topics concerning modeling and analysis with ANSYS®. Extensive examples from various engineering disciplines are presented in a step-by-step fashion, focusing on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Additional materials for this book, including the "input" files for the example problems, as well as the colored figures and screen shots, allowing them to be regenerated on the reader’s own computer, may be downloaded from http://extras.springer.com.