Download or read book Applied Bioinformatics written by Paul Maria Selzer and published by Springer Science & Business Media. This book was released on 2008-01-18 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: At last, here is a baseline book for anyone who is confused by cryptic computer programs, algorithms and formulae, but wants to learn about applied bioinformatics. Now, anyone who can operate a PC, standard software and the internet can also learn to understand the biological basis of bioinformatics, of the existence as well as the source and availability of bioinformatics software, and how to apply these tools and interpret results with confidence. This process is aided by chapters that introduce important aspects of bioinformatics, detailed bioinformatics exercises (including solutions), and to cap it all, a glossary of definitions and terminology relating to bioinformatics.
Download or read book Applied Bioinformatics written by David Hendrix and published by . This book was released on 2019-10-03 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Basic Applied Bioinformatics written by Chandra Sekhar Mukhopadhyay and published by John Wiley & Sons. This book was released on 2017-09-15 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible guide that introduces students in all areas of life sciences to bioinformatics Basic Applied Bioinformatics provides a practical guidance in bioinformatics and helps students to optimize parameters for data analysis and then to draw accurate conclusions from the results. In addition to parameter optimization, the text will also familiarize students with relevant terminology. Basic Applied Bioinformatics is written as an accessible guide for graduate students studying bioinformatics, biotechnology, and other related sub-disciplines of the life sciences. This accessible text outlines the basics of bioinformatics, including pertinent information such as downloading molecular sequences (nucleotide and protein) from databases; BLAST analyses; primer designing and its quality checking, multiple sequence alignment (global and local using freely available software); phylogenetic tree construction (using UPGMA, NJ, MP, ME, FM algorithm and MEGA7 suite), prediction of protein structures and genome annotation, RNASeq data analyses and identification of differentially expressed genes and similar advanced bioinformatics analyses. The authors Chandra Sekhar Mukhopadhyay, Ratan Kumar Choudhary, and Mir Asif Iquebal are noted experts in the field and have come together to provide an updated information on bioinformatics. Salient features of this book includes: Accessible and updated information on bioinformatics tools A practical step-by-step approach to molecular-data analyses Information pertinent to study a variety of disciplines including biotechnology, zoology, bioinformatics and other related fields Worked examples, glossary terms, problems and solutions Basic Applied Bioinformatics gives students studying bioinformatics, agricultural biotechnology, animal biotechnology, medical biotechnology, microbial biotechnology, and zoology an updated introduction to the growing field of bioinformatics.
Download or read book Unsupervised Feature Extraction Applied to Bioinformatics written by Y-h. Taguchi and published by Springer Nature. This book was released on 2019-08-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. Allows readers to analyze data sets with small samples and many features; Provides a fast algorithm, based upon linear algebra, to analyze big data; Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Download or read book Applied Bioinformatics Statistics Economics in Fisheries Research written by Niranjan Sarangi and published by New India Publishing. This book was released on 2008 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: With reference to India; contributed articles.
Download or read book High Dimensional Data Analysis in Cancer Research written by Xiaochun Li and published by Springer Science & Business Media. This book was released on 2008-12-19 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.
Download or read book Applied Mycology written by Mahendra Rai and published by CABI. This book was released on 2009 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fungal kingdom consists of a wide variety of organisms with a diverse range of forms and functions. Fungi have been utilized for thousands of years and their importance in agriculture, medicine, food production and the environmental sciences is well known. New advances in genomic and metabolomic technologies have allowed further developments in the use of fungi in industry and medicine, increasing the need for a compilation of new applications, developments and technologies across the mycological field. Applied Mycology brings together a range of contributions, highlighting the diverse nature of current research. Chapters include discussions of fungal associations in the environment, agriculture and forestry, long established and novel applications of fungi in fermentation, the use of fungi in the pharmaceutical industry, the growing recognition of fungal infections, current interests in the use fungal enzymes in biotechnology and the new and emerging field of myconanotechnology. Demonstrating the broad coverage and importance of mycological research, this book will be of interest to researchers and students in all biological sciences.
Download or read book Modern Clinical Trial Analysis written by Wan Tang and published by Springer Science & Business Media. This book was released on 2012-09-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume covers classic as well as cutting-edge topics on the analysis of clinical trial data in biomedical and psychosocial research and discusses each topic in an expository and user-friendly fashion. The intent of the book is to provide an overview of the primary statistical and data analytic issues associated with each of the selected topics, followed by a discussion of approaches for tackling such issues and available software packages for carrying out analyses. While classic topics such as survival data analysis, analysis of diagnostic test data and assessment of measurement reliability are well known and covered in depth by available topic-specific texts, this volume serves a different purpose: it provides a quick introduction to each topic for self-learning, particularly for those who have not done any formal coursework on a given topic but must learn it due to its relevance to their multidisciplinary research. In addition, the chapters on these classic topics will reflect issues particularly relevant to modern clinical trials such as longitudinal designs and new methods for analyzing data from such study designs. The coverage of these topics provides a quick introduction to these important statistical issues and methods for addressing them. As with the classic topics, this part of the volume on modern topics will enable researchers to grasp the statistical methods for addressing these emerging issues underlying modern clinical trials and to apply them to their research studies.
Download or read book Statistical Methods in Bioinformatics written by Warren J. Ewens and published by Springer Science & Business Media. This book was released on 2005-09-30 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)
Download or read book Advanced Data Mining Technologies in Bioinformatics written by Hui-Huang Hsu and published by IGI Global. This book was released on 2006-01-01 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers research topics of data mining on bioinformatics presenting the basics and problems of bioinformatics and applications of data mining technologies pertaining to the field"--Provided by publisher.
Download or read book Algorithms in Bioinformatics written by Wing-Kin Sung and published by CRC Press. This book was released on 2009-11-24 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly Describes Biological Applications, Computational Problems, and Various Algorithmic Solutions Developed from the author's own teaching material, Algorithms in Bioinformatics: A Practical Introduction provides an in-depth introduction to the algorithmic techniques applied in bioinformatics. For each topic, the author clearly details the bi
Download or read book Basics of Bioinformatics written by Rui Jiang and published by Springer Science & Business Media. This book was released on 2013-11-26 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book outlines 11 courses and 15 research topics in bioinformatics, based on curriculums and talks in a graduate summer school on bioinformatics that was held in Tsinghua University. The courses include: Basics for Bioinformatics, Basic Statistics for Bioinformatics, Topics in Computational Genomics, Statistical Methods in Bioinformatics, Algorithms in Computational Biology, Multivariate Statistical Methods in Bioinformatics Research, Association Analysis for Human Diseases: Methods and Examples, Data Mining and Knowledge Discovery Methods with Case Examples, Applied Bioinformatics Tools, Foundations for the Study of Structure and Function of Proteins, Computational Systems Biology Approaches for Deciphering Traditional Chinese Medicine, and Advanced Topics in Bioinformatics and Computational Biology. This book can serve as not only a primer for beginners in bioinformatics, but also a highly summarized yet systematic reference book for researchers in this field. Rui Jiang and Xuegong Zhang are both professors at the Department of Automation, Tsinghua University, China. Professor Michael Q. Zhang works at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Download or read book Bioinformatics written by David Edwards and published by Springer. This book was released on 2010-04-29 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinformatics is a relatively new field of research. It evolved from the requirement to process, characterize, and apply the information being produced by DNA sequencing technology. The production of DNA sequence data continues to grow exponentially. At the same time, improved bioinformatics such as faster DNA sequence search methods have been combined with increasingly powerful computer systems to process this information. Methods are being developed for the ever more detailed quantification of gene expression, providing an insight into the function of the newly discovered genes, while molecular genetic tools provide a link between these genes and heritable traits. Genetic tests are now available to determine the likelihood of suffering specific ailments and can predict how plant cultivars may respond to the environment. The steps in the translation of the genetic blueprint to the observed phenotype is being increasingly understood through proteome, metabolome and phenome analysis, all underpinned by advances in bioinformatics. Bioinformatics is becoming increasingly central to the study of biology, and a day at a computer can often save a year or more in the laboratory. The volume is intended for graduate-level biology students as well as researchers who wish to gain a better understanding of applied bioinformatics and who wish to use bioinformatics technologies to assist in their research. The volume would also be of value to bioinformatics developers, particularly those from a computing background, who would like to understand the application of computational tools for biological research. Each chapter would include a comprehensive introduction giving an overview of the fundamentals, aimed at introducing graduate students and researchers from diverse backgrounds to the field and bring them up-to-date on the current state of knowledge. To accommodate the broad range of topics in applied bioinformatics, chapters have been grouped into themes: gene and genome analysis, molecular genetic analysis, gene expression analysis, protein and proteome analysis, metabolome analysis, phenome data analysis, literature mining and bioinformatics tool development. Each chapter and theme provides an introduction to the biology behind the data describes the requirements for data processing and details some of the methods applied to the data to enhance biological understanding.
Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Download or read book Emerging Trends in Computational Biology Bioinformatics and Systems Biology written by Hamid R Arabnia and published by Morgan Kaufmann. This book was released on 2015-08-11 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simu- lation techniques. • Discusses the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological and behavioral systems, including applications in cancer research, computational intelligence and drug design, high-performance computing, and biology, as well as cloud and grid computing for the storage and access of big data sets. • Presents a systematic approach for storing, retrieving, organizing, and analyzing biological data using software tools with applications to general principles of DNA/RNA structure, bioinformatics and applications, genomes, protein structure, and modeling and classification, as well as microarray analysis. • Provides a systems biology perspective, including general guidelines and techniques for obtaining, integrating, and analyzing complex data sets from multiple experimental sources using computational tools and software. Topics covered include phenomics, genomics, epigenomics/epigenetics, metabolomics, cell cycle and checkpoint control, and systems biology and vaccination research. • Explains how to effectively harness the power of Big Data tools when data sets are so large and complex that it is difficult to process them using conventional database management systems or traditional data processing applications. - Discusses the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological and behavioral systems. - Presents a systematic approach for storing, retrieving, organizing and analyzing biological data using software tools with applications. - Provides a systems biology perspective including general guidelines and techniques for obtaining, integrating and analyzing complex data sets from multiple experimental sources using computational tools and software.
Download or read book Computing for Comparative Microbial Genomics written by David Wayne Ussery and published by Springer Science & Business Media. This book was released on 2009-02-26 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview and Goals This book describes how to visualize and compare bacterial genomes. Sequencing technologies are becoming so inexpensive that soon going for a cup of coffee will be more expensive than sequencing a bacterial genome. Thus, there is a very real and pressing need for high-throughput computational methods to compare hundreds and thousands of bacterial genomes. It is a long road from molecular biology to systems biology, and in a sense this text can be thought of as a path bridging these ? elds. The goal of this book is to p- vide a coherent set of tools and a methodological framework for starting with raw DNA sequences and producing fully annotated genome sequences, and then using these to build up and test models about groups of interacting organisms within an environment or ecological niche. Organization and Features The text is divided into four main parts: Introduction, Comparative Genomics, Transcriptomics and Proteomics, and ? nally Microbial Communities. The ? rst ? ve chapters are introductions of various sorts. Each of these chapters represents an introduction to a speci? c scienti? c ? eld, to bring all readers up to the same basic level before proceeding on to the methods of comparing genomes. First, a brief overview of molecular biology and of the concept of sequences as biological inf- mation are given.
Download or read book Bioinformatics Basics written by Lukas K. Buehler and published by CRC Press. This book was released on 2005-06-23 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every researcher in genomics and proteomics now has access to public domain databases containing literally billions of data entries. However, without the right analytical tools, and an understanding of the biological significance of the data, cataloging and interpreting the molecular evolutionary processes buried in those databases is difficult, if