EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applied Bayesian Statistical Studies in Biology and Medicine

Download or read book Applied Bayesian Statistical Studies in Biology and Medicine written by M. di Bacco and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the results of biological and medical research with the statistical methods used to obtain them. Nowadays the fields of biology and experimental medicine rely on techniques for processing of experimental data and for the evaluation of hypotheses. It is increasingly necessary to stimulate awareness of the importance of statistical techniques (and of the possible traps that they can hide) by using real data in concrete situations drawn from research activity.

Book Likelihood and Bayesian Inference

Download or read book Likelihood and Bayesian Inference written by Leonhard Held and published by Springer Nature. This book was released on 2020-03-31 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated textbook covers modern statistical methods with applications in medicine, epidemiology and biology. Firstly, it discusses the importance of statistical models in applied quantitative research and the central role of the likelihood function, describing likelihood-based inference from a frequentist viewpoint, and exploring the properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic. In the second part of the book, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. It includes a separate chapter on modern numerical techniques for Bayesian inference, and also addresses advanced topics, such as model choice and prediction from frequentist and Bayesian perspectives. This revised edition of the book “Applied Statistical Inference” has been expanded to include new material on Markov models for time series analysis. It also features a comprehensive appendix covering the prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis, and each chapter is complemented by exercises. The text is primarily intended for graduate statistics and biostatistics students with an interest in applications.

Book Bayesian Methods in Structural Bioinformatics

Download or read book Bayesian Methods in Structural Bioinformatics written by Thomas Hamelryck and published by Springer. This book was released on 2012-03-23 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an edited volume, the goal of which is to provide an overview of the current state-of-the-art in statistical methods applied to problems in structural bioinformatics (and in particular protein structure prediction, simulation, experimental structure determination and analysis). It focuses on statistical methods that have a clear interpretation in the framework of statistical physics, rather than ad hoc, black box methods based on neural networks or support vector machines. In addition, the emphasis is on methods that deal with biomolecular structure in atomic detail. The book is highly accessible, and only assumes background knowledge on protein structure, with a minimum of mathematical knowledge. Therefore, the book includes introductory chapters that contain a solid introduction to key topics such as Bayesian statistics and concepts in machine learning and statistical physics.

Book Bayesian Biostatistics and Diagnostic Medicine

Download or read book Bayesian Biostatistics and Diagnostic Medicine written by Lyle D. Broemeling and published by CRC Press. This book was released on 2007-07-12 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are numerous advantages to using Bayesian methods in diagnostic medicine, which is why they are employed more and more today in clinical studies. Exploring Bayesian statistics at an introductory level, Bayesian Biostatistics and Diagnostic Medicine illustrates how to apply these methods to solve important problems in medicine and biology.

Book Applied Statistical Inference

Download or read book Applied Statistical Inference written by Leonhard Held and published by Springer Science & Business Media. This book was released on 2013-11-12 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.

Book Applying Quantitative Bias Analysis to Epidemiologic Data

Download or read book Applying Quantitative Bias Analysis to Epidemiologic Data written by Timothy L. Lash and published by Springer Science & Business Media. This book was released on 2011-04-14 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bias analysis quantifies the influence of systematic error on an epidemiology study’s estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside from listing them as limitations of their particular study. This listing is often accompanied by explanations for why the limitations should not pose much concern. On the supply side, methods for bias analysis receive little attention in most epidemiology curriculums, are often scattered throughout textbooks or absent from them altogether, and cannot be implemented easily using standard statistical computing software. Our objective in this text is to reduce these supply-side barriers, with the hope that demand for quantitative bias analysis will follow.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Bayesian Statistics for Beginners

Download or read book Bayesian Statistics for Beginners written by Therese M. Donovan and published by Oxford University Press, USA. This book was released on 2019 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.

Book Bayesian Statistics  A Review

Download or read book Bayesian Statistics A Review written by D. V. Lindley and published by SIAM. This book was released on 1972-01-31 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study of those statistical ideas that use a probability distribution over parameter space. The first part describes the axiomatic basis in the concept of coherence and the implications of this for sampling theory statistics. The second part discusses the use of Bayesian ideas in many branches of statistics.

Book Bayesian Analysis for Population Ecology

Download or read book Bayesian Analysis for Population Ecology written by Ruth King and published by CRC Press. This book was released on 2009-10-30 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing model choice and model averaging, this book presents up-to-date Bayesian methods for analyzing complex ecological data. It provides a basic introduction to Bayesian methods that assumes no prior knowledge. The book includes detailed descriptions of methods that deal with covariate data and covers techniques at the forefront of research, such as model discrimination and model averaging. Leaders in the statistical ecology field, the authors apply the theory to a wide range of actual case studies and illustrate the methods using WinBUGS and R. The computer programs and full details of the data sets are available on the book's website.

Book Estimating Presence and Abundance of Closed Populations

Download or read book Estimating Presence and Abundance of Closed Populations written by George A. F. Seber and published by Springer Nature. This book was released on 2024-01-02 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book covers a wide variety of methods for estimating the sizes and related parameters of closed populations. With the effect of climate change, and human territory invasion, we have seen huge species losses and a major biodiversity decline. Populations include plants, trees, various land and sea animals, and some human populations. With such a diversity of populations, an extensive variety of different methods are described with the collection of different types of data. For example, we have count data from plot sampling, which can also allow for incomplete detection. There is a large chapter on occupancy methods where a major interest is determining whether a particular species is present or not. Citizen and opportunistic survey data can also be incorporated. A related topic is species methods, where species richness and species' interactions are of interest. A variety of distance methods are discussed. One can use distances from points and lines, as well as nearest neighbor distances. The applications are extensive, and include marine, acoustic, and aerial surveys, using multiple observers or detection devices. Line intercept measurements have a role to play such as, for example, estimating parameters relating to plant coverage. An increasingly important class of removal methods considers successive “removals" from a population, with physical removal or "removal" by capture-recapture of marked individuals. With the change-in-ratio method, removals are taken from two or more classes, e.g., males and females. Effort data used for removals can also be used. A very important method for estimating abundance is the use of capture-recapture data collected discretely or continuously and can be analysed using both frequency and Bayesian methods. Computational aspects of fitting Bayesian models are described. A related topic of growing interest is the use of spatial and camera methods. With the plethora of models there has been a corresponding development of various computational methods and packages, which are often mentioned throughout. Covariate data is being used more frequently, which can reduce the number of unknown parameters by using logistic and loglinear models. An important computational aspect is that of model selection methods. The book provides a useful list of over 1400 references.

Book Information Quality

    Book Details:
  • Author : Ron S. Kenett
  • Publisher : John Wiley & Sons
  • Release : 2016-10-13
  • ISBN : 1118890647
  • Pages : 384 pages

Download or read book Information Quality written by Ron S. Kenett and published by John Wiley & Sons. This book was released on 2016-10-13 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance at many stages of the data analytics journey, from the pre-data collection stage to the post-data collection and post-analysis stages. It is also critical to various stakeholders: data collection agencies, analysts, data scientists, and management. This book: Explains how to integrate the notions of goal, data, analysis and utility that are the main building blocks of data analysis within any domain. Presents a framework for integrating domain knowledge with data analysis. Provides a combination of both methodological and practical aspects of data analysis. Discusses issues surrounding the implementation and integration of InfoQ in both academic programmes and business / industrial projects. Showcases numerous case studies in a variety of application areas such as education, healthcare, official statistics, risk management and marketing surveys. Presents a review of software tools from the InfoQ perspective along with example datasets on an accompanying website. This book will be beneficial for researchers in academia and in industry, analysts, consultants, and agencies that collect and analyse data as well as undergraduate and postgraduate courses involving data analysis.

Book Biostatistics with R

    Book Details:
  • Author : Babak Shahbaba
  • Publisher : Springer Science & Business Media
  • Release : 2011-12-15
  • ISBN : 1461413028
  • Pages : 355 pages

Download or read book Biostatistics with R written by Babak Shahbaba and published by Springer Science & Business Media. This book was released on 2011-12-15 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biostatistics with R is designed around the dynamic interplay among statistical methods, their applications in biology, and their implementation. The book explains basic statistical concepts with a simple yet rigorous language. The development of ideas is in the context of real applied problems, for which step-by-step instructions for using R and R-Commander are provided. Topics include data exploration, estimation, hypothesis testing, linear regression analysis, and clustering with two appendices on installing and using R and R-Commander. A novel feature of this book is an introduction to Bayesian analysis. This author discusses basic statistical analysis through a series of biological examples using R and R-Commander as computational tools. The book is ideal for instructors of basic statistics for biologists and other health scientists. The step-by-step application of statistical methods discussed in this book allows readers, who are interested in statistics and its application in biology, to use the book as a self-learning text.

Book Bayesian Survival Analysis

    Book Details:
  • Author : Joseph G. Ibrahim
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 1475734476
  • Pages : 494 pages

Download or read book Bayesian Survival Analysis written by Joseph G. Ibrahim and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. It presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all from the health sciences, including cancer, AIDS, and the environment.

Book Bayesian Data Analysis for Animal Scientists

Download or read book Bayesian Data Analysis for Animal Scientists written by Agustín Blasco and published by Springer. This book was released on 2017-08-30 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.

Book Bayesian Inference for Gene Expression and Proteomics

Download or read book Bayesian Inference for Gene Expression and Proteomics written by Kim-Anh Do and published by Cambridge University Press. This book was released on 2006-07-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expert overviews of Bayesian methodology, tools and software for multi-platform high-throughput experimentation.

Book Case Studies in Bayesian Statistical Modelling and Analysis

Download or read book Case Studies in Bayesian Statistical Modelling and Analysis written by Clair L. Alston and published by John Wiley & Sons. This book was released on 2012-12-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.