EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applications of Linear Models in Animal Breeding

Download or read book Applications of Linear Models in Animal Breeding written by Charles R. Henderson and published by Guelph, Ont. : University of Guelph. This book was released on 1984 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Statistical Methods for Genetic Improvement of Livestock

Download or read book Advances in Statistical Methods for Genetic Improvement of Livestock written by Daniel Gianola and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in statistics and computing as well as their application to genetic improvement of livestock gained momentum over the last 20 years. This text reviews and consolidates the statistical foundations of animal breeding. This text will prove useful as a reference source to animal breeders, quantitative geneticists and statisticians working in these areas. It will also serve as a text in graduate courses in animal breeding methodology with prerequisite courses in linear models, statistical inference and quantitative genetics.

Book Methods and Applications of Linear Models

Download or read book Methods and Applications of Linear Models written by Ronald R. Hocking and published by John Wiley & Sons. This book was released on 2005-02-04 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: A popular statistical text now updated and better than ever! The ready availability of high-speed computers and statistical software encourages the analysis of ever larger and more complex problems while at the same time increasing the likelihood of improper usage. That is why it is increasingly important to educate end users in the correct interpretation of the methodologies involved. Now in its second edition, Methods and Applications of Linear Models: Regression and the Analysis of Variance seeks to more effectively address the analysis of such models through several important changes. Notable in this new edition: Fully updated and expanded text reflects the most recent developments in the AVE method Rearranged and reorganized discussions of application and theory enhance text’s effectiveness as a teaching tool More than 100 new exercises in the areas of regression and analysis of variance As in the First Edition, the author presents a thorough treatment of the concepts and methods of linear model analysis, and illustrates them with various numerical and conceptual examples, using a data-based approach to development and analysis. Data sets, available on an FTP site, allow readers to apply analytical methods discussed in the book.

Book Linear Models for the Prediction of the Genetic Merit of Animals  4th Edition

Download or read book Linear Models for the Prediction of the Genetic Merit of Animals 4th Edition written by Raphael Mrode and published by CABI. This book was released on 2023-10-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental to any livestock improvement programme by animal scientists, is the prediction of genetic merit in the offspring generation for desirable production traits such as increased growth rate, or superior meat, milk and wool production. Covering the foundational principles on the application of linear models for the prediction of genetic merit in livestock, this new edition is fully updated to incorporate recent advances in genomic prediction approaches, genomic models for multi-breed and crossbred performance, dominance and epistasis. It provides models for the analysis of main production traits as well as functional traits and includes numerous worked examples. For the first time, R codes for key examples in the textbook are provided online. Suitable for graduate and postgraduate students, researchers and lecturers of animal breeding, genetics and genomics, this established textbook provides a thorough grounding in both the basics and in new developments of linear models and animal genetics.

Book Genetic Data Analysis for Plant and Animal Breeding

Download or read book Genetic Data Analysis for Plant and Animal Breeding written by Fikret Isik and published by Springer. This book was released on 2017-09-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.

Book Linear Models and the Relevant Distributions and Matrix Algebra

Download or read book Linear Models and the Relevant Distributions and Matrix Algebra written by David A. Harville and published by CRC Press. This book was released on 2018-03-22 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Models and the Relevant Distributions and Matrix Algebra provides in-depth and detailed coverage of the use of linear statistical models as a basis for parametric and predictive inference. It can be a valuable reference, a primary or secondary text in a graduate-level course on linear models, or a resource used (in a course on mathematical statistics) to illustrate various theoretical concepts in the context of a relatively complex setting of great practical importance. Features: Provides coverage of matrix algebra that is extensive and relatively self-contained and does so in a meaningful context Provides thorough coverage of the relevant statistical distributions, including spherically and elliptically symmetric distributions Includes extensive coverage of multiple-comparison procedures (and of simultaneous confidence intervals), including procedures for controlling the k-FWER and the FDR Provides thorough coverage (complete with detailed and highly accessible proofs) of results on the properties of various linear-model procedures, including those of least squares estimators and those of the F test. Features the use of real data sets for illustrative purposes Includes many exercises David Harville served for 10 years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories at Wright-Patterson AFB, Ohio, 20 years as a full professor in Iowa State University’s Department of Statistics where he now has emeritus status, and seven years as a research staff member of the Mathematical Sciences Department of IBM’s T.J. Watson Research Center. He has considerable relevant experience, having taught M.S. and Ph.D. level courses in linear models, been the thesis advisor of 10 Ph.D. graduates, and authored or co-authored two books and more than 80 research articles. His work has been recognized through his election as a Fellow of the American Statistical Association and of the Institute of Mathematical Statistics and as a member of the International Statistical Institute.

Book A SAS IML Companion for Linear Models

Download or read book A SAS IML Companion for Linear Models written by Jamis J. Perrett and published by Springer Science & Business Media. This book was released on 2009-12-12 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear models courses are often presented as either theoretical or applied. Consequently, students may find themselves either proving theorems or using high-level procedures like PROC GLM to analyze data. There exists a gap between the derivation of formulas and analyses that hide these formulas behind attractive user interfaces. This book bridges that gap, demonstrating theory put into practice. Concepts presented in a theoretical linear models course are often trivialized in applied linear models courses by the facility of high-level SAS procedures like PROC MIXED and PROC REG that require the user to provide a few options and statements and in return produce vast amounts of output. This book uses PROC IML to show how analytic linear models formulas can be typed directly into PROC IML, as they were presented in the linear models course, and solved using data. This helps students see the link between theory and application. This also assists researchers in developing new methodologies in the area of linear models. The book contains complete examples of SAS code for many of the computations relevant to a linear models course. However, the SAS code in these examples automates the analytic formulas. The code for high-level procedures like PROC MIXED is also included for side-by-side comparison. The book computes basic descriptive statistics, matrix algebra, matrix decomposition, likelihood maximization, non-linear optimization, etc. in a format conducive to a linear models or a special topics course. Also included in the book is an example of a basic analysis of a linear mixed model using restricted maximum likelihood estimation (REML). The example demonstrates tests for fixed effects, estimates of linear functions, and contrasts. The example starts by showing the steps for analyzing the data using PROC IML and then provides the analysis using PROC MIXED. This allows students to follow the process that lead to the output.

Book Linear Models for the Prediction of Animal Breeding Values

Download or read book Linear Models for the Prediction of Animal Breeding Values written by R. A. Mrode and published by Cab International. This book was released on 2014 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prediction of producing desirable traits in offspring such as increased growth rate or superior meat, milk and wool production is a vital economic tool to the animal scientist. Summarizing the latest developments in genomics relating to animal breeding values and design of breeding programs, this new edition includes models of survival analysis, social interaction and sire and dam models, as well as advancements in the use of SNPs in the computation of genomic breeding values.

Book Biostatistics for Animal Science  3rd Edition

Download or read book Biostatistics for Animal Science 3rd Edition written by Miroslav Kaps and published by CABI. This book was released on 2017-06-23 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to cover techniques for analysis of data in the animal sciences, this popular textbook provides an overview of the basic principles of statistics enabling the subsequent applications to be carried out with familiarity and understanding. Each chapter begins by introducing a problem with practical questions, followed by a brief theoretical background. Most topics are followed up with numerical examples to illustrate the methods described using data-sets from animal sciences and related fields. The same examples are then solved using the SAS software package. Written primarily for students and researchers in animal sciences, the text is also useful for those studying agricultural, biological, and veterinary sciences.

Book Multivariate Statistical Machine Learning Methods for Genomic Prediction

Download or read book Multivariate Statistical Machine Learning Methods for Genomic Prediction written by Osval Antonio Montesinos López and published by Springer Nature. This book was released on 2022-02-14 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Book Predicting Breeding Values with Applications in Forest Tree Improvement

Download or read book Predicting Breeding Values with Applications in Forest Tree Improvement written by T.L. White and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: In most breeding programs of plant and animal species, genetic data (such as data from field progeny tests) are used to rank parents and help choose candidates for selection. In general, all selection processes first rank the candidates using some function of the observed data and then choose as the selected portion those candidates with the largest (or smallest) values of that function. To make maximum progress from selection, it is necessary to use a function of the data that results in the candidates being ranked as closely as possible to the true (but always unknown) ranking. Very often the observed data on various candidates are messy and unbalanced and this complicates the process of developing precise and accurate rankings. For example, for any given candidate, there may be data on that candidate and its siblings growing in several field tests of different ages. Also, there may be performance data on siblings, ancestors or other relatives from greenhouse, laboratory or other field tests. In addition, data on different candidates may differ drastically in terms of quality and quantity available and may come from varied relatives. Genetic improvement programs which make most effective use of these varied, messy, unbalanced and ancestral data will maximize progress from all stages of selection. In this regard, there are two analytical techniques, best linear prediction (BLP) and best linear unbiased prediction (BLUP), which are quite well-suited to predicting genetic values from a wide variety of sources, ages, qualities and quantities of data.

Book Analysis of Variance for Random Models  Volume 2  Unbalanced Data

Download or read book Analysis of Variance for Random Models Volume 2 Unbalanced Data written by Hardeo Sahai and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematic treatment of the commonly employed crossed and nested classification models used in analysis of variance designs with a detailed and thorough discussion of certain random effects models not commonly found in texts at the introductory or intermediate level. It also includes numerical examples to analyze data from a wide variety of disciplines as well as any worked examples containing computer outputs from standard software packages such as SAS, SPSS, and BMDP for each numerical example.

Book Generalized Linear Mixed Models

Download or read book Generalized Linear Mixed Models written by Walter W. Stroup and published by CRC Press. This book was released on 2024-05-21 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture – linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory. Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, this book covers all of the above as members of a unified GLMM family of linear models. In addition to essential theory and methodology, this book features a rich collection of examples using SAS® software to illustrate GLMM practice. This second edition is updated to reflect lessons learned and experience gained regarding best practices and modeling choices faced by GLMM practitioners. New to this edition are two chapters focusing on Bayesian methods for GLMMs. Key Features: • Most statistical modeling books cover classical linear models or advanced generalized and mixed models; this book covers all members of the GLMM family – classical and advanced models. • Incorporates lessons learned from experience and on-going research to provide up-to-date examples of best practices. • Illustrates connections between statistical design and modeling: guidelines for translating study design into appropriate model and in-depth illustrations of how to implement these guidelines; use of GLMM methods to improve planning and design. • Discusses the difference between marginal and conditional models, differences in the inference space they are intended to address and when each type of model is appropriate. • In addition to likelihood-based frequentist estimation and inference, provides a brief introduction to Bayesian methods for GLMMs. Walt Stroup is an Emeritus Professor of Statistics. He served on the University of Nebraska statistics faculty for over 40 years, specializing in statistical modeling and statistical design. He is a Fellow of the American Statistical Association, winner of the University of Nebraska Outstanding Teaching and Innovative Curriculum Award and author or co-author of three books on mixed models and their extensions. Marina Ptukhina (Pa-too-he-nuh), PhD, is an Associate Professor of Statistics at Whitman College. She is interested in statistical modeling, design and analysis of research studies and their applications. Her research includes applications of statistics to economics, biostatistics and statistical education. Ptukhina earned a PhD in Statistics from the University of Nebraska-Lincoln, a Master of Science degree in Mathematics from Texas Tech University and a Specialist degree in Management from The National Technical University "Kharkiv Polytechnic Institute." Julie Garai, PhD, is a Data Scientist at Loop. She earned her PhD in Statistics from the University of Nebraska-Lincoln and a bachelor’s degree in Mathematics and Spanish from Doane College. Dr Garai actively collaborates with statisticians, psychologists, ecologists, forest scientists, software engineers, and business leaders in academia and industry. In her spare time, she enjoys leisurely walks with her dogs, dance parties with her children, and playing the trombone.

Book Forest Genetics

    Book Details:
  • Author : Timothy L. White
  • Publisher : CABI
  • Release : 2007
  • ISBN : 1845932854
  • Pages : 702 pages

Download or read book Forest Genetics written by Timothy L. White and published by CABI. This book was released on 2007 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which contains 20 chapters, integrates the varied subdisciplines of genetics and their applications in gene conservation, tree improvement and biotechnology. Topics covered include: genetic variation in natural forests, the application of genetics in tree improvement and breeding programmes, and genomic sequences and molecular technologies. This book will be a valuable resource for students, scientists and professionals in the plant sciences, especially forest geneticists, tree breeders, forest managers and other natural resource specialists.

Book Plant Breeding Reviews  Volume 22

Download or read book Plant Breeding Reviews Volume 22 written by Jules Janick and published by John Wiley & Sons. This book was released on 2003-03-19 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant Breeding Reviews, Volume 22 presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. The emphasis of the series is on methodology, a practical understanding of crop genetics, and applications to major crops.

Book Global Agenda for Livestock Research

Download or read book Global Agenda for Livestock Research written by C. Devendra and published by ILRI (aka ILCA and ILRAD). This book was released on 1995-01-01 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Animal Breeding

    Book Details:
  • Author : Orville L. Bondoc
  • Publisher : UP Press
  • Release : 2008
  • ISBN : 9715425895
  • Pages : 406 pages

Download or read book Animal Breeding written by Orville L. Bondoc and published by UP Press. This book was released on 2008 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an outstanding contribution to the very meager list of books and reading materials available to Filipino teachers, students, and practitioners working on animal improvement. Dr. Bondoc offers scholarly breeding principles based on his years of experience and research.