EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Moments in Mathematics

Download or read book Moments in Mathematics written by Henry J. Landau and published by American Mathematical Soc.. This book was released on 1987 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Function theory, spectral decomposition of operators, probability, approximation, electrical and mechanical inverse problems, prediction of stochastic processes, the design of algorithms for signal-processing VLSI chips--these are among a host of important theoretical and applied topics illuminated by the classical moment problem. To survey some of these ramifications and the research which derives from them, the AMS sponsored the Short Course Moments in Mathematics at the Joint Mathematics Meetings, held in San Antonio, Texas, in January 1987. This volume contains the six lectures presented during that course. The papers are likely to find a wide audience, for they are expository, but nevertheless lead the reader to topics of current research. In his paper, Henry J. Landau sketches the main ideas of past work related to the moment problem by such mathematicians as Caratheodory, Herglotz, Schur, Riesz, and Krein and describes the way the moment problem has interconnected so many diverse areas of research. J. H. B. Kemperman examines the moment problem from a geometric viewpoint which involves a certain natural duality method and leads to interesting applications in linear programming, measure theory, and dilations. Donald Sarason first provides a brief review of the theory of unbounded self-adjoint operators then goes on to sketch the operator-theoretic treatment of the Hamburger problem and to discuss Hankel operators, the Adamjan-Arov-Krein approach, and the theory of unitary dilations. Exploring the interplay of trigonometric moment problems and signal processing, Thomas Kailath describes the role of Szego polynomials in linear predictive coding methods, parallel implementation, one-dimensional inverse scattering problems, and the Toeplitz moment matrices. Christian Berg contrasts the multi-dimensional moment problem with the one-dimensional theory and shows how the theory of the moment problem may be viewed as part of harmonic analysis on semigroups. Starting from a historical survey of the use of moments in probability and statistics, Persi Diaconis illustrates the continuing vitality of these methods in a variety of recent novel problems drawn from such areas as Wiener-Ito integrals, random graphs and matrices, Gibbs ensembles, cumulants and self-similar processes, projections of high-dimensional data, and empirical estimation.

Book Generalized Method of Moments Estimation

Download or read book Generalized Method of Moments Estimation written by Laszlo Matyas and published by Cambridge University Press. This book was released on 1999-04-13 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The generalized method of moments (GMM) estimation has emerged as providing a ready to use, flexible tool of application to a large number of econometric and economic models by relying on mild, plausible assumptions. The principal objective of this volume is to offer a complete presentation of the theory of GMM estimation as well as insights into the use of these methods in empirical studies. It is also designed to serve as a unified framework for teaching estimation theory in econometrics. Contributors to the volume include well-known authorities in the field based in North America, the UK/Europe, and Australia. The work is likely to become a standard reference for graduate students and professionals in economics, statistics, financial modeling, and applied mathematics.

Book The Birnbaum Saunders Distribution

Download or read book The Birnbaum Saunders Distribution written by Victor Leiva and published by Academic Press. This book was released on 2015-10-26 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Birnbaum-Saunders Distribution presents the statistical theory, methodology, and applications of the Birnbaum-Saunders distribution, a very flexible distribution for modeling different types of data (mainly lifetime data). The book describes the most recent theoretical developments of this model, including properties, transformations and related distributions, lifetime analysis, and shape analysis. It discusses methods of inference based on uncensored and censored data, goodness-of-fit tests, and random number generation algorithms for the Birnbaum-Saunders distribution, also presenting existing and future applications. - Introduces inference in the Birnbaum-Saunders distribution - Provides a comprehensive review of the statistical theory and methodology of the Birnbaum-Distribution - Discusses different applications of the Birnbaum-Saunders distribution - Explains characterization and the lifetime analysis

Book Mathematical Statistics with Applications in R

Download or read book Mathematical Statistics with Applications in R written by Kandethody M. Ramachandran and published by Elsevier. This book was released on 2014-09-14 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner.This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students.Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. - Step-by-step procedure to solve real problems, making the topic more accessible - Exercises blend theory and modern applications - Practical, real-world chapter projects - Provides an optional section in each chapter on using Minitab, SPSS and SAS commands - Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods

Book Mathematical Statistics With Applications

Download or read book Mathematical Statistics With Applications written by Asha Seth Kapadia and published by CRC Press. This book was released on 2017-07-12 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical statistics typically represents one of the most difficult challenges in statistics, particularly for those with more applied, rather than mathematical, interests and backgrounds. Most textbooks on the subject provide little or no review of the advanced calculus topics upon which much of mathematical statistics relies and furthermore contain material that is wholly theoretical, thus presenting even greater challenges to those interested in applying advanced statistics to a specific area. Mathematical Statistics with Applications presents the background concepts and builds the technical sophistication needed to move on to more advanced studies in multivariate analysis, decision theory, stochastic processes, or computational statistics. Applications embedded within theoretical discussions clearly demonstrate the utility of the theory in a useful and relevant field of application and allow readers to avoid sudden exposure to purely theoretical materials. With its clear explanations and more than usual emphasis on applications and computation, this text reaches out to the many students and professionals more interested in the practical use of statistics to enrich their work in areas such as communications, computer science, economics, astronomy, and public health.

Book Probability and Mathematical Statistics

Download or read book Probability and Mathematical Statistics written by Mary C. Meyer and published by SIAM. This book was released on 2019-06-24 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theory of probability and mathematical statistics with the goal of analyzing real-world data. Throughout the text, the R package is used to compute probabilities, check analytically computed answers, simulate probability distributions, illustrate answers with appropriate graphics, and help students develop intuition surrounding probability and statistics. Examples, demonstrations, and exercises in the R programming language serve to reinforce ideas and facilitate understanding and confidence. The book’s Chapter Highlights provide a summary of key concepts, while the examples utilizing R within the chapters are instructive and practical. Exercises that focus on real-world applications without sacrificing mathematical rigor are included, along with more than 200 figures that help clarify both concepts and applications. In addition, the book features two helpful appendices: annotated solutions to 700 exercises and a Review of Useful Math. Written for use in applied masters classes, Probability and Mathematical Statistics: Theory, Applications, and Practice in R is also suitable for advanced undergraduates and for self-study by applied mathematicians and statisticians and qualitatively inclined engineers and scientists.

Book Generalized Method of Moments

Download or read book Generalized Method of Moments written by Alastair R. Hall and published by Oxford University Press. This book was released on 2005 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalized Method of Moments (GMM) has become one of the main statistical tools for the analysis of economic and financial data. This book is the first to provide an intuitive introduction to the method combined with a unified treatment of GMM statistical theory and a survey of recentimportant developments in the field. Providing a comprehensive treatment of GMM estimation and inference, it is designed as a resource for both the theory and practice of GMM: it discusses and proves formally all the main statistical results, and illustrates all inference techniques using empiricalexamples in macroeconomics and finance.Building from the instrumental variables estimator in static linear models, it presents the asymptotic statistical theory of GMM in nonlinear dynamic models. Within this framework it covers classical results on estimation and inference techniques, such as the overidentifying restrictions test andtests of structural stability, and reviews the finite sample performance of these inference methods. And it discusses in detail recent developments on covariance matrix estimation, the impact of model misspecification, moment selection, the use of the bootstrap, and weak instrumentasymptotics.

Book Probability Distributions Used in Reliability Engineering

Download or read book Probability Distributions Used in Reliability Engineering written by Andrew N O'Connor and published by RIAC. This book was released on 2011 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.

Book Probability and Statistics with Applications

Download or read book Probability and Statistics with Applications written by Leonard A. Asimow and published by ACTEX Publications. This book was released on 2010 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is listed on the Course of Reading for SOA Exam P, and for the CAS Exam ST. Probability and Statistics with Applications: A Problem Solving Text is an introductory textbook designed to make the subject accessible to college freshmen and sophomores concurrent with their study of calculus. The book provides the content to serve as the primary text for a standard two-semester advanced undergraduate course in mathematical probability and statistics. It is organized specifically to meet the needs of students who are preparing for the Society of Actuaries and Casualty Actuarial Society qualifying examination P/1 and the statistics component of CAS Exam 3L. Sample actuarial exam problems are integrated throughout the text along with an abundance of illustrative examples and 799 exercises. The chapters on mathematical statistics cover all of the learning objectives for the statistics portion of the Casualty Actuarial Society Exam ST syllabus. Here again, liberal use is made of past exam problems from CAS Exams 3 and 3L. A separate solutions manual for the text exercises is also available.

Book Moments  Positive Polynomials and Their Applications

Download or read book Moments Positive Polynomials and Their Applications written by Jean-Bernard Lasserre and published by World Scientific. This book was released on 2010 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources

Book Advanced Statistics with Applications in R

Download or read book Advanced Statistics with Applications in R written by Eugene Demidenko and published by John Wiley & Sons. This book was released on 2019-11-12 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Statistics with Applications in R fills the gap between several excellent theoretical statistics textbooks and many applied statistics books where teaching reduces to using existing packages. This book looks at what is under the hood. Many statistics issues including the recent crisis with p-value are caused by misunderstanding of statistical concepts due to poor theoretical background of practitioners and applied statisticians. This book is the product of a forty-year experience in teaching of probability and statistics and their applications for solving real-life problems. There are more than 442 examples in the book: basically every probability or statistics concept is illustrated with an example accompanied with an R code. Many examples, such as Who said π? What team is better? The fall of the Roman empire, James Bond chase problem, Black Friday shopping, Free fall equation: Aristotle or Galilei, and many others are intriguing. These examples cover biostatistics, finance, physics and engineering, text and image analysis, epidemiology, spatial statistics, sociology, etc. Advanced Statistics with Applications in R teaches students to use theory for solving real-life problems through computations: there are about 500 R codes and 100 datasets. These data can be freely downloaded from the author's website dartmouth.edu/~eugened. This book is suitable as a text for senior undergraduate students with major in statistics or data science or graduate students. Many researchers who apply statistics on the regular basis find explanation of many fundamental concepts from the theoretical perspective illustrated by concrete real-world applications.

Book Foundations and Applications of Statistics

Download or read book Foundations and Applications of Statistics written by Randall Pruim and published by American Mathematical Soc.. This book was released on 2018-04-04 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.

Book Lectures on Probability Theory and Mathematical Statistics   3rd Edition

Download or read book Lectures on Probability Theory and Mathematical Statistics 3rd Edition written by Marco Taboga and published by Createspace Independent Publishing Platform. This book was released on 2017-12-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.

Book Probability and Statistics

Download or read book Probability and Statistics written by Michael J. Evans and published by Macmillan. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Normal and Student   s t Distributions and Their Applications

Download or read book Normal and Student s t Distributions and Their Applications written by Mohammad Ahsanullah and published by Springer Science & Business Media. This book was released on 2014-02-07 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most important properties of normal and Student t-distributions are presented. A number of applications of these properties are demonstrated. New related results dealing with the distributions of the sum, product and ratio of the independent normal and Student distributions are presented. The materials will be useful to the advanced undergraduate and graduate students and practitioners in the various fields of science and engineering.

Book Probability  Random Variables  and Data Analytics with Engineering Applications

Download or read book Probability Random Variables and Data Analytics with Engineering Applications written by P. Mohana Shankar and published by Springer Nature. This book was released on 2021-02-08 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book bridges the gap between theory and applications that currently exist in undergraduate engineering probability textbooks. It offers examples and exercises using data (sets) in addition to traditional analytical and conceptual ones. Conceptual topics such as one and two random variables, transformations, etc. are presented with a focus on applications. Data analytics related portions of the book offer detailed coverage of receiver operating characteristics curves, parametric and nonparametric hypothesis testing, bootstrapping, performance analysis of machine vision and clinical diagnostic systems, and so on. With Excel spreadsheets of data provided, the book offers a balanced mix of traditional topics and data analytics expanding the scope, diversity, and applications of engineering probability. This makes the contents of the book relevant to current and future applications students are likely to encounter in their endeavors after completion of their studies. A full suite of classroom material is included. A solutions manual is available for instructors. Bridges the gap between conceptual topics and data analytics through appropriate examples and exercises; Features 100's of exercises comprising of traditional analytical ones and others based on data sets relevant to machine vision, machine learning and medical diagnostics; Intersperses analytical approaches with computational ones, providing two-level verifications of a majority of examples and exercises.