EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Application of Ruthenium Nanoparticles with Determined Structure in the Catalytic Oxidation of Carbon Black and Propylene

Download or read book Application of Ruthenium Nanoparticles with Determined Structure in the Catalytic Oxidation of Carbon Black and Propylene written by Rita Mahfouz and published by . This book was released on 2017 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt: The synthesis of the newly discovered fcc ruthenium nanoparticles and the conventional hcp nanoparticles was established via the chemical reduction method. The nanoparticles were supported on ceria and zirconia and then thermally stabilized by calcination at 400oC or 600oC. A series of ruthenium-based catalysts were also prepared by the dry impregnation method and further calcined. The catalysts prepared by both techniques were evaluated for their catalytic activities in the oxidation reactions of carbon black and propylene. The fcc Ru nanoparticles with PVP were successfully synthesized and their XRD results were compatible with the reference. TPR results of fcc and hcp Ru/CeO2 catalysts showed the presence of well-dispersed ruthenium oxide species which were responsible for their remarkable catalytic activities in both oxidation reactions. Fcc and hcp Ru/ZrO2 catalysts revealed minimal catalytic performance as a result of their lower oxygen storage capacity. Among the impregnated catalysts, imp Ru/CeO2-600oC recorded the highest decrease in Tm under loose contact conditions in the total combustion of carbon black.

Book Catalytic Oxidation of Carbon Black and Propene Over Ru CexZr1 xO2 Catalysts

Download or read book Catalytic Oxidation of Carbon Black and Propene Over Ru CexZr1 xO2 Catalysts written by Doris Homsi El Murr and published by . This book was released on 2009 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ruthenium Oxidation Complexes

    Book Details:
  • Author : William P. Griffith
  • Publisher : Springer Science & Business Media
  • Release : 2010-11-03
  • ISBN : 1402093780
  • Pages : 274 pages

Download or read book Ruthenium Oxidation Complexes written by William P. Griffith and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ruthenium Oxidation Complexes explores ruthenium complexes, particularly those in higher oxidation states, which function as useful and selective organic oxidation catalysts. Particular emphasis is placed on those systems which are of industrial significance. The preparation, properties and applications of the ruthenium complexes are described, followed by a presentation of their oxidative properties and summary of the different mechanisms involved in the organic oxidations (e.g. oxidations of alcohols, alkenes, arenes and alkynes, alkanes, amines, ethers, phopshines and miscellaneous substrates). Moreover, future trends and developments in the area are discussed. This monograph is aimed at inorganic, organic, industrial and catalysis chemists, especially those who wish to carry out specific organic oxidations using catalytic methods.

Book Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation

Download or read book Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation written by Benjamin Miller and published by . This book was released on 2016 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium, rather than crystalline RuO2 is the most active species.

Book Ruthenium Catalysts and Fine Chemistry

Download or read book Ruthenium Catalysts and Fine Chemistry written by Christian Bruneau and published by Springer Science & Business Media. This book was released on 2004-06-30 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by numerous experts

Book Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

Download or read book Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation written by and published by . This book was released on 2010 with total page 2709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac)3 precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

Book Ruthenium in Organic Synthesis

Download or read book Ruthenium in Organic Synthesis written by Shun-Ichi Murahashi and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this comprehensive book, one of the leading experts, Shun-Ichi Murahashi, presents all the important facets of modern synthetic chemistry using Ruthenium, ranging from hydrogenation to metathesis. In 14 contributions, written by an international authorship, readers will find all the information they need about this fascinating and extraordinary chemistry. The result is a high quality information source and a indispensable reading for everyone working in organometallic chemistry. From the contents: Introduction (S.-I. Murahashi) Hydrogenation and Transfer Hydrogenation (M. Kitamura and R. Noyori) Oxidations (S.-I. Murahashi and N. Komiya) Carbon-Carbon Bond Formations via Ruthenacycle Intermediates (K. Itoh) Carbon-Carbon Bond Formation via pi-Allylruthenium Intermediates (T. Mitsudo) Olefin Metathesis (R. H. Grubbs) Cyclopropanation (H. Nishiyama) Nucleophilic Addition to Alkynes and Reactions via Vinylidene Intermediates (P. Dixneuf) Reactions via C-H Activation (N. Chatani) Lewis Acid Reactions (E. P. Kundig) Reactions with CO and CO2 (T. Mitsudo) Isomerization of Organic Substrates Catalyzed by Ruthenium Complexes (H. Suzuki) Radical Reactions (H. Nagashima) Bond Cleavage Reactions (S. Komiya)

Book Structural and Dynamical Studies of Catalytically Active Ruthenium Nanoparticles Employing  1hn2H Solid State NMR

Download or read book Structural and Dynamical Studies of Catalytically Active Ruthenium Nanoparticles Employing 1hn2H Solid State NMR written by Bernadeta Walaszek and published by . This book was released on 2008 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Supercritical Fluid Technology for Energy and Environmental Applications

Download or read book Supercritical Fluid Technology for Energy and Environmental Applications written by Vladimir Anikeev and published by Newnes. This book was released on 2013-12-21 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercritical Fluid Technology for Energy and Environmental Applications covers the fundamental principles involved in the preparation and characterization of supercritical fluids (SCFs) used in the energy production and other environmental applications. Energy production from diversified resources — including renewable materials — using clean processes can be accomplished using technologies like SCFs. This book is focused on critical issues scientists and engineers face in applying SCFs to energy production and environmental protection, the innovative solutions they have found, and the challenges they need to overcome. The book also covers the basics of sub- and supercritical fluids, like the thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations. A supercritical fluid is any substance at a temperature and pressure above its critical point where distinct liquid and gas phases do not exist. At this state the compound demonstrates unique properties, which can be "fine-tuned," making them suitable as organic solvents in a range of industrial and laboratory processes. This volume enables readers to select the most appropriate medium for a specific situation. It helps instructors prepare course material for graduate and postgraduate courses in the area of chemistry, chemical engineering, and environmental engineering. And it helps professional engineers learn supercritical fluid-based technologies and use them in solving the increasingly challenging environmental issues. Relates theory, chemical characteristics, and properties of the particular supercritical fluid to its various applications Covers the fundamentals of supercritical fluids, like thermodynamics of phase and chemical equilibria, mathematical modeling, and process calculations Includes the most recent applications of supercritical fluids, including energy generation, materials synthesis, and environmental protection

Book Investigation of Synthesis Methods for Improved Platinum Ruthenium Nanoparticles Supported on Multi Walled Carbon Nanotube Electrocatalysts for Direct Methanol Fuel Cells

Download or read book Investigation of Synthesis Methods for Improved Platinum Ruthenium Nanoparticles Supported on Multi Walled Carbon Nanotube Electrocatalysts for Direct Methanol Fuel Cells written by Lindiwe Eudora Khotseng and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book chapter reports on various catalyst synthesis methods (impregnation, polyol, modified polyol, and microwave-assisted modified polyol methods) to determine which method would result in the most electrochemically active platinum-ruthenium (PtRu) electrocatalyst supported on multi-walled carbon nanotubes (MWCNTs) for methanol oxidation reaction in an acidic medium. Different techniques were used to characterize the synthesized catalysts, including the high-resolution transmission electron microscope used for morphology and calculating particle sizes, and X-ray diffraction for determining crystalline sizes. The electroactive catalyst surface area, ECSA of the electrocatalysts was determined using cyclic voltammetry (CV), while the electroactivity, electron kinetics, and stability of the electrocatalysts towards methanol oxidation were evaluated using CV, electrochemical impedance spectroscopy, and chronoamperometry, respectively. The microwave-assisted modified polyol method produced the PtRu/MWCNT electrocatalyst with the most enhanced electrocatalytic activity compared to other PtRu/MWCNT catalysts produced by the impregnation, polyol, and modified polyol methods.

Book Synthesis And Characterization Of Ruthenium 0  Metal Nanoparticles As Catalyst In The Hydrolysis of Sodium Borohydride

Download or read book Synthesis And Characterization Of Ruthenium 0 Metal Nanoparticles As Catalyst In The Hydrolysis of Sodium Borohydride written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Sodium borohydride is stable in alkaline solution, however, it hydrolyses and generates hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. All of the catalyst having been used in the hydrolysis of sodium borohydride, with one exception, are heterogeneous. The limited surface area of the heterogeneous and therefore, have limited activity because of the surface area. Thus, the use of metal nanoclusters as catalyst with large surface area is expected to provide a potential route to increase the catalytic activity. In this dissertation we report for the first time the use of ruthenium(0) nanoparticles as catalyst in the hydrolysis of sodium borohydride. The water dispersible ruthenium(0) nanoparticles were prepared by the reduction of RuCl3.xH2O with sodium borohydride and were stabilized by three different ligands dodecanethiol, ethylenediamine and acetate. Among these three colloidal materials the acetate stabilized ruthenium(0) nanoparticles were found to have the highest catalytic activity in catalyzing the hydrolysis of sodium borohydride. The acetate stabilized ruthenium(0) nanoparticles were characterized by tranmission electron microscopy (TEM), X-ray photoelectron spectroscopy and FT-IR spectroscopy. The particle size of the acetate stabilized ruthenium(0) nanoparticles was determined to be 2.62"1.18 nm from the TEM analysis. The kinetic of the ruthenium(0) nanoparticles catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration and temperature. The activation parameters of this reaction were also determined from the evaluation of the kinetic data. This catalyst provides the lowest activation energy ever found for the hydrolysis of sodium borohydride.

Book Controlled Synthesis of Ru Nanoparticle Covalent Assemblies and Their Catalytic Application

Download or read book Controlled Synthesis of Ru Nanoparticle Covalent Assemblies and Their Catalytic Application written by Yuanyuan Min (docteur en chimie).) and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research work focuses on the preparation of Ru nanoparticle (NP) covalent assemblies stabilized by different functional molecules, and the study of structure/activity relationships for catalytic hydrogenation reactions. Chapter 1 reviews the metal NP covalent assemblies according to the synthesis strategies and their application in catalysis. Chapter 2 described the preparation of three-dimension (3D) Ru NP covalent assemblies characterized by: i) well-defined nanometricsized Ru NP stabilized by functionalized adamantane, bis-adamantane and diamantane ligands, and ii) a tunable interparticle distance. The coordination chemistry with amine and carboxylic acid ligands towards the Ru NP surface was investigated. In the case of carboxylic acid ligands it was shown that Ru species formed during the NP assembly are able to partially decarbonylate carboxylic acid ligands at room temperature. The mechanism of this reaction was elucidated by DFT. Chapter 3 detailed the use of other molecular building blocks for Ru NP assembly formation. We showed that the use of tricarboxylic-hexyloxy triphenylene ligand leads to the formation of twodimensional (2D) Ru NP assemblies with homogeneous interparticle distance and NP size. Additionally, 3D Ru NP assemblies were prepared with 9, 10-dicarboxylic anthracene and a hexaadduct functionalized C60 fullerene. In Chapter 4 we studied the catalytic performances of the Ru NP networks in various reactions. All these materials constitute an interesting set to investigate the structural and electronic effects in heterogeneous catalysis. In the selective hydrogenation of phenyl acetylene, the assemblies are active, reaching good selectivity towards styrene. Especially, we demonstrated that confinement and electronic effects are occurring and that Ru NP interparticle distance affects the catalyst activity, whereas electronic effects mainly govern the catalyst selectivity. The stability of the Ru NP assembly is finally discussed.

Book Discoveries in Ruthenium Oxide Based Catalysts  From Morphology Control for Water Electrolysis to Surface Structure Determination Via Machine Learning

Download or read book Discoveries in Ruthenium Oxide Based Catalysts From Morphology Control for Water Electrolysis to Surface Structure Determination Via Machine Learning written by Yonghyuk Lee and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient New Routes to Leading Ruthenium Catalysts  and Studies of Bimolecular Loss of Alkylidene

Download or read book Efficient New Routes to Leading Ruthenium Catalysts and Studies of Bimolecular Loss of Alkylidene written by Craig Day and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Olefin metathesis is an exceptionally versatile and general methodology for the catalytic assembly of carbon-carbon bonds. Ruthenium metathesis catalysts have been widely embraced in academia, and are starting to see industrial uptake. However, the challenges of reliability, catalyst productivity, and catalyst cost have limited implementation even in value-added technology areas such as pharmaceutical manufacturing. Key to the broader adoption of metathesis methodologies is improved understanding of catalyst decomposition. Many studies have focused on phenomenological relationships that relate catalyst activity to substrate structure, and on the synthesis of new catalysts that offer improved activity. Until recently, however, relatively little attention was paid to catalyst decomposition. The first part of this thesis explores a largely overlooked decomposition pathway for "second-generation" olefin metathesis catalysts bearing an N-heterocyclic carbenes (NHC) ligand, with a particular focus on identifying the Ru decomposition products. Efforts directed at the deliberate synthesis of these products led to the discovery of a succinct, high-yielding route to the second-generation catalysts. Multiple reports, including a series of detailed mechanistic studies from our group, have documented the negative impact of phosphine ligands in Ru-catalyzed olefin metathesis. Phosphine-free derivatives are now becoming widely adopted, particularly in pharma, as recognition of these limitations has grown. Decomposition of the phosphine-free catalysts, however, was little explored at the outset of this work. The only documented pathway for intrinsic decomposition (i.e. in the absence of an external agent) was -hydride elimination of the metallacyclobutane (MCB) ring as propene. An alternative mechanism, well established for group 3-7 and first-generation ruthenium metathesis catalysts, is bimolecular coupling (BMC) of the four-coordinate methylidene intermediate. However, this pathway was widely viewed as irrelevant to decomposition of second-generation Ru catalysts. This thesis work complements parallel studies from the Fogg group, which set out to examine the relevance and extent of BMC for this important class of catalysts. First, -hydride elimination was quantified, to assess the importance of the accepted pathway. Even at low catalyst concentrations (2 mM Ru), less than 50% decomposition was shown to arise from -hydride elimination. Parallel studies by Gwen Bailey demonstrated ca. 80% BMC for the fast-initiating catalyst RuCl2H2IMes(=CHPh)(py)2 GIII. Second, the ruthenium products of decomposition were isolated and characterized. Importantly, and in contrast to inferences drawn from the serendipitous isolation of crystalline byproducts (which commonly show a cyclometallated NHC ligand), these complexes show an intact H2IMes group. This rules out NHC activation as central to catalyst decomposition, suggesting that catalyst redesign should not focus on NHC cyclometallation as a core problem. Building on historical observations, precautions against bimolecular coupling are proposed to guide catalyst choice, redesign, and experimental setup. The second part of this thesis work focused on the need for more efficient routes to second-generation Ru metathesis catalysts, and indeed a general lack of convenient, well-behaved precursors to RuCl2(H2IMes). This challenge was met by building on early studies in which metathesis catalysts were generated in situ by thermal or photochemical activation of RuCl2(p-cymene)(PCy3) in the presence of diazoesters. Such piano-stool complexes (including the IMes analogue) have also been applied more broadly as catalysts, inorganic drugs, sensors, and supramolecular building blocks. However, RuCl2(p-cymene)(H2IMes), which should in principle offer access to the RuCl2(H2IMes) building block, has been described as too unstable for practical use. The basis of the instability of RuCl2(p-cymene)(H2IMes) toward loss of the p-cymene ring was examined. Key factors included control over reaction stoichiometry (i.e. limiting the proportion of the free NHC), limiting exposure to light, and maintaining low concentrations to inhibit bimolecular displacement of the p-cymene ring. A near-quantitative route to RuCl2(p-cymene)(H2IMes) was achieved using appropriate dilutions and rates of reagent addition, and taking precautions against photodecomposition. This approach was used to develop atom-economical syntheses of the Hoveyda catalyst, RuCl2(H2IMes)(=CHAr) (Ar = 2-isopropoxybenzylidene) and RuCl2(H2IMes)(PPh3)(=CHPh), a fast-initiating analogue of GII. Related p-cymene complexes bearing bulky, inflexible imidazolidene or other donors may likewise be accessible.

Book Ruthenium Nanoparticles

Download or read book Ruthenium Nanoparticles written by Katrin Pelzer and published by . This book was released on 2003 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: