Download or read book Analyzing Tabular Data written by Nigel Gilbert and published by Taylor & Francis. This book was released on 2022-02-10 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1993, Analyzing Tabular Data is an accessible text introducing a powerful range of analytical methods. Empirical social research almost invariably requires the presentation and analysis of tables, and this book is for those who have little prior knowledge of quantitative analysis or statistics, but who have a practical need to extract the most from their data. The book begins with an introduction to the process of data analysis and the basic structure of cross-tabulations. At the core of the methods described in the text is the loglinear model. This and the logistic model, are explained and their application to causal modelling, to event history analysis, and to social mobility research are described in detail. Each chapter concludes with sample programs to show how analysis on typical datasets can be carried out using either the popular computer packages, SPSS, or the statistical programme, GLIM. The book is packed with examples which apply the methods to social science research. Sociologists, geographers, psychologists, economists, market researchers and those involved in survey research in the fields of planning, evaluation and policy will find the book to be a clear and thorough exposition of methods for the analysis of tabular data.
Download or read book Information Quality in Information Fusion and Decision Making written by Éloi Bossé and published by Springer. This book was released on 2019-04-02 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a contemporary view of the role of information quality in information fusion and decision making, and provides a formal foundation and the implementation strategies required for dealing with insufficient information quality in building fusion systems for decision making. Information fusion is the process of gathering, processing, and combining large amounts of information from multiple and diverse sources, including physical sensors to human intelligence reports and social media. That data and information may be unreliable, of low fidelity, insufficient resolution, contradictory, fake and/or redundant. Sources may provide unverified reports obtained from other sources resulting in correlations and biases. The success of the fusion processing depends on how well knowledge produced by the processing chain represents reality, which in turn depends on how adequate data are, how good and adequate are the models used, and how accurate, appropriate or applicable prior and contextual knowledge is. By offering contributions by leading experts, this book provides an unparalleled understanding of the problem of information quality in information fusion and decision-making for researchers and professionals in the field.
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Download or read book Analyzing Neural Time Series Data written by Mike X Cohen and published by MIT Press. This book was released on 2014-01-17 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
Download or read book Humanities Data Analysis written by Folgert Karsdorp and published by Princeton University Press. This book was released on 2021-01-12 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to data-intensive humanities research using the Python programming language The use of quantitative methods in the humanities and related social sciences has increased considerably in recent years, allowing researchers to discover patterns in a vast range of source materials. Despite this growth, there are few resources addressed to students and scholars who wish to take advantage of these powerful tools. Humanities Data Analysis offers the first intermediate-level guide to quantitative data analysis for humanities students and scholars using the Python programming language. This practical textbook, which assumes a basic knowledge of Python, teaches readers the necessary skills for conducting humanities research in the rapidly developing digital environment. The book begins with an overview of the place of data science in the humanities, and proceeds to cover data carpentry: the essential techniques for gathering, cleaning, representing, and transforming textual and tabular data. Then, drawing from real-world, publicly available data sets that cover a variety of scholarly domains, the book delves into detailed case studies. Focusing on textual data analysis, the authors explore such diverse topics as network analysis, genre theory, onomastics, literacy, author attribution, mapping, stylometry, topic modeling, and time series analysis. Exercises and resources for further reading are provided at the end of each chapter. An ideal resource for humanities students and scholars aiming to take their Python skills to the next level, Humanities Data Analysis illustrates the benefits that quantitative methods can bring to complex research questions. Appropriate for advanced undergraduates, graduate students, and scholars with a basic knowledge of Python Applicable to many humanities disciplines, including history, literature, and sociology Offers real-world case studies using publicly available data sets Provides exercises at the end of each chapter for students to test acquired skills Emphasizes visual storytelling via data visualizations
Download or read book Development Research in Practice written by Kristoffer Bjärkefur and published by World Bank Publications. This book was released on 2021-07-16 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well as illustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically. “In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.†? —Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University “Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.†? —Ruth E. Levine, PhD, CEO, IDinsight “Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.†? —Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley “The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.†? —Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University
Download or read book Analyzing Data with Power BI and Power Pivot for Excel written by Alberto Ferrari and published by Microsoft Press. This book was released on 2017-04-28 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Renowned DAX experts Alberto Ferrari and Marco Russo teach you how to design data models for maximum efficiency and effectiveness. How can you use Excel and Power BI to gain real insights into your information? As you examine your data, how do you write a formula that provides the numbers you need? The answers to both of these questions lie with the data model. This book introduces the basic techniques for shaping data models in Excel and Power BI. It’s meant for readers who are new to data modeling as well as for experienced data modelers looking for tips from the experts. If you want to use Power BI or Excel to analyze data, the many real-world examples in this book will help you look at your reports in a different way–like experienced data modelers do. As you’ll soon see, with the right data model, the correct answer is always a simple one! By reading this book, you will: • Gain an understanding of the basics of data modeling, including tables, relationships, and keys • Familiarize yourself with star schemas, snowflakes, and common modeling techniques • Learn the importance of granularity • Discover how to use multiple fact tables, like sales and purchases, in a complex data model • Manage calendar-related calculations by using date tables • Track historical attributes, like previous addresses of customers or manager assignments • Use snapshots to compute quantity on hand • Work with multiple currencies in the most efficient way • Analyze events that have durations, including overlapping durations • Learn what data model you need to answer your specific business questions About This Book • For Excel and Power BI users who want to exploit the full power of their favorite tools • For BI professionals seeking new ideas for modeling data
Download or read book Data Analysis with Python and PySpark written by Jonathan Rioux and published by Simon and Schuster. This book was released on 2022-03-22 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Think big about your data! PySpark brings the powerful Spark big data processing engine to the Python ecosystem, letting you seamlessly scale up your data tasks and create lightning-fast pipelines.In Data Analysis with Python and PySpark you will learn how to:Manage your data as it scales across multiple machines, Scale up your data programs with full confidence, Read and write data to and from a variety of sources and formats, Deal with messy data with PySpark's data manipulation functionality, Discover new data sets and perform exploratory data analysis, Build automated data pipelines that transform, summarize, and get insights from data, Troubleshoot common PySpark errors, Creating reliable long-running jobs. Data Analysis with Python and PySpark is your guide to delivering successful Python-driven data projects. Packed with relevant examples and essential techniques, this practical book teaches you to build pipelines for reporting, machine learning, and other data-centric tasks. Quick exercises in every chapter help you practice what you've learned, and rapidly start implementing PySpark into your data systems. No previous knowledge of Spark is required.Data Analysis with Python and PySpark helps you solve the daily challenges of data science with PySpark. You'll learn how to scale your processing capabilities across multiple machines while ingesting data from any source--whether that's Hadoop clusters, cloud data storage, or local data files. Once you've covered the fundamentals, you'll explore the full versatility of PySpark by building machine learning pipelines, and blending Python, pandas, and PySpark code.
Download or read book Excel Data Analysis For Dummies written by Paul McFedries and published by John Wiley & Sons. This book was released on 2022-02-15 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turn jumbles of numbers into graphics, insights, and answers with Excel With Microsoft Excel, you can, well, excel at data analysis. And Excel Data Analysis For Dummies can help, with clear and easy explanations of the mountain of features for creating, visualizing, and analyzing data. PivotTables, charts, what-if analysis, statistical functions—it's all in here, with examples and ideas for Excel users of all skill levels. This latest edition covers the most recent updates to Excel and Microsoft 365. You'll beef up your data skills and learn powerful techniques for turning numbers into knowledge. For students, researchers, and business professionals, Excel is the spreadsheet and data application of choice—and Dummies is the best choice for learning how to make those numbers sing. Learn how to use Excel's built-in data analysis features and write your own functions to explore patterns in your data Create striking charts and visualizations, and discover multiple ways to tell the stories hidden in the numbers Clean up large datasets and identify statistical operations that will answer your questions Perform financial calculations, database operations, and more—without leaving Excel Excel Data Analysis For Dummies is the go-to resource for Excel users who are looking for better ways to crunch the numbers.
Download or read book R for Data Science written by Hadley Wickham and published by "O'Reilly Media, Inc.". This book was released on 2016-12-12 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Download or read book Data Science For Dummies written by Lillian Pierson and published by John Wiley & Sons. This book was released on 2017-02-21 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
Download or read book Microsoft Office Inside Out Office 2021 and Microsoft 365 written by Joe Habraken and published by Microsoft Press. This book was released on 2021-12-22 with total page 1513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conquer Microsoft Office—from the inside out! Dive into the Microsoft Office application suite—and really put its productivity tools and services to work for you! This supremely well-organized reference packs hundreds of timesaving solutions, tips, and workarounds—all you need to make the most of Office's most powerful tools for productivity and decision-making. Renowned Office expert Joe Habraken offers a complete tour of Microsoft Office, with cutting-edge techniques and shortcuts for Word, Excel, PowerPoint, Outlook, Publisher, the 365 Online apps, and more. Discover how experts tackle today's key tasks—and challenge yourself to new levels of mastery. Create amazing content faster with Office's new features, tools, and shortcuts. Share, collaborate with, and secure Office files in the cloud. Organize, edit, and format complex documents with Microsoft Word. Build tables of contents, captions, indexes, and footnotes that automatically update. Efficiently enter and manage data in Excel workbooks, and format it for easy understanding. Build flexible, reliable Excel workbooks with formulas and functions—including XLOOKUP and other enhancements. Integrate data from external sources, including stock and currency data, and Wolfram curated knowledge. Transform data into insight with Pivot Tables and Excel charts — including new recommended charts and the Quick Analysis gallery. Quickly create presentations with PowerPoint themes, Reuse Slides, and Libraries. Build more impactful slides with advanced formatting, SmartArt, animation, transitions, media, and free stock images. Use PowerPoint tools to present more effectively—in person or online via Microsoft Teams. Systematically improve email productivity and security with Outlook. Manage appointments and tasks and quickly plan meetings.
Download or read book The Art and Science of Analyzing Software Data written by Christian Bird and published by Elsevier. This book was released on 2015-09-02 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Art and Science of Analyzing Software Data provides valuable information on analysis techniques often used to derive insight from software data. This book shares best practices in the field generated by leading data scientists, collected from their experience training software engineering students and practitioners to master data science. The book covers topics such as the analysis of security data, code reviews, app stores, log files, and user telemetry, among others. It covers a wide variety of techniques such as co-change analysis, text analysis, topic analysis, and concept analysis, as well as advanced topics such as release planning and generation of source code comments. It includes stories from the trenches from expert data scientists illustrating how to apply data analysis in industry and open source, present results to stakeholders, and drive decisions. - Presents best practices, hints, and tips to analyze data and apply tools in data science projects - Presents research methods and case studies that have emerged over the past few years to further understanding of software data - Shares stories from the trenches of successful data science initiatives in industry
Download or read book Expert C written by Marcelo Guerra Hahn and published by Packt Publishing Ltd. This book was released on 2023-08-25 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your C++ skills to the next level with expert insights on advanced techniques, design patterns, and high-performance programming Purchase of the print or Kindle book includes a free PDF eBook Key Features Master templates, metaprogramming, and advanced functional programming techniques to elevate your C++ skills Design scalable and efficient C++ applications with the latest features of C++17 and C++20 Explore real-world examples and essential design patterns to optimize your code Book DescriptionAre you an experienced C++ developer eager to take your skills to the next level? This updated edition of Expert C++ is tailored to propel you toward your goals. This book takes you on a journey of building C++ applications while exploring advanced techniques beyond object-oriented programming. Along the way, you'll get to grips with designing templates, including template metaprogramming, and delve into memory management and smart pointers. Once you have a solid grasp of these foundational concepts, you'll advance to more advanced topics such as data structures with STL containers and explore advanced data structures with C++. Additionally, the book covers essential aspects like functional programming, concurrency, and multithreading, and designing concurrent data structures. It also offers insights into designing world-ready applications, incorporating design patterns, and addressing networking and security concerns. Finally, it adds to your knowledge of debugging and testing and large-scale application design. With Expert C++ as your guide, you'll be empowered to push the boundaries of your C++ expertise and unlock new possibilities in software development.What you will learn Go beyond the basics to explore advanced C++ programming techniques Develop proficiency in advanced data structures and algorithm design with C++17 and C++20 Implement best practices and design patterns to build scalable C++ applications Master C++ for machine learning, data science, and data analysis framework design Design world-ready applications, incorporating networking and security considerations Strengthen your understanding of C++ concurrency, multithreading, and optimizing performance with concurrent data structures Who this book is forThis book will empower experienced C++ developers to achieve advanced proficiency, enabling them to build professional-grade applications with the latest features of C++17 and C++20. If you’re an aspiring software engineer or computer science student, you’ll be able to master advanced C++ programming techniques through real-world applications that will prepare you for complex projects and real-world challenges.
Download or read book Data Scientist Diploma master s level City of London College of Economics 6 months 100 online self paced written by City of London College of Economics and published by City of London College of Economics. This book was released on with total page 2653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link.
Download or read book Analyzing Linguistic Data written by R. H. Baayen and published by Cambridge University Press. This book was released on 2008-03-06 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical analysis is a useful skill for linguists and psycholinguists, allowing them to understand the quantitative structure of their data. This textbook provides a straightforward introduction to the statistical analysis of language. Designed for linguists with a non-mathematical background, it clearly introduces the basic principles and methods of statistical analysis, using 'R', the leading computational statistics programme. The reader is guided step-by-step through a range of real data sets, allowing them to analyse acoustic data, construct grammatical trees for a variety of languages, quantify register variation in corpus linguistics, and measure experimental data using state-of-the-art models. The visualization of data plays a key role, both in the initial stages of data exploration and later on when the reader is encouraged to criticize various models. Containing over 40 exercises with model answers, this book will be welcomed by all linguists wishing to learn more about working with and presenting quantitative data.
Download or read book Dyadic Data Analysis written by David A. Kenny and published by Guilford Publications. This book was released on 2020-11-26 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interpersonal phenomena such as attachment, conflict, person perception, learning, and influence have traditionally been studied by examining individuals in isolation, which falls short of capturing their truly interpersonal nature. This book offers state-of-the-art solutions to this age-old problem by presenting methodological and data-analytic approaches useful in investigating processes that take place among dyads: couples, coworkers, parent and child, teacher and student, or doctor and patient, to name just a few. Rich examples from psychology and across the behavioral and social sciences help build the researcher's ability to conceptualize relationship processes; model and test for actor effects, partner effects, and relationship effects; and model and control for the statistical interdependence that can exist between partners. The companion website provides clarifications, elaborations, corrections, and data and files for each chapter.