EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analytical Models of Thermal Stresses in Composite Materials

Download or read book Analytical Models of Thermal Stresses in Composite Materials written by Ladislav Ceniga and published by Nova Publishers. This book was released on 2008 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first volume of the trilogy Analytical models of thermal stresses in composite materials I, II, III , presenting, in each of the volumes, genuine results only created by the author. The fact that the author proceeds from fundamental equations of Mechanics of Solid Continuum confirms the genuineness of the results and accordingly establishment of new scientific school with an interdisciplinary character belonging to the scientific branch Applied Mechanics. As an imagination considered for the analytical models, an elastic solid continuum is represented by a multi-particle-(envelope)-matrix system consisting of components represented by spherical particles periodically distributed in an infinite matrix, without or with a spherical envelope on the surface of each of the spherical particles. The multi-particle-(envelope)-matrix system with different distribution of the spherical particles is considered as a model system for a determination of the thermal stresses in real composite materials with finite dimensions included in the categories.

Book Analytical Models of Thermal Stresses in Composite Materials II

Download or read book Analytical Models of Thermal Stresses in Composite Materials II written by Ladislav Ceniga and published by . This book was released on 2007 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deals with analytical models of thermal stresses in isotropic and anisotropic composite materials.

Book Analytical Models of Thermal Stresses in Anisotropic Composite Materials

Download or read book Analytical Models of Thermal Stresses in Anisotropic Composite Materials written by Ladislav Ceniga and published by Nova Science Publishers. This book was released on 2017 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents analytical models of thermal stresses in two- and three-component composites with anisotropic components. Within the analytical modelling, the two- and three-component composites are replaced by a multi-particle-matrix and multi-particle-envelope-matrix systems, respectively. These model systems consist of anisotropic spherical particles (either without or with an envelope on the particle surface), which are periodically distributed in an anisotropic infinite matrix. The thermal stresses that originate below the relaxation temperature during a cooling process are a consequence of the difference in dimensions of the components. This difference is a consequence of different thermal expansion coefficients and/or a consequence of the phase-transformation induced strain, which is determined for anisotropic crystal lattices. The analytical modelling results from mutually different mathematical procedures, which are applied to fundamental equations of solid continuum mechanics (Hooke's law for an anisotropic elastic solid continuum, Cauchy's law, and compatibility and equilibrium equations). The thermal stress-strain state in each anisotropic component of the model systems is determined by several different solutions, which fulfill boundary conditions. Due to these different solutions, a principle of minimal total potential energy of an elastic solid body is then required to be considered. Results of this book are applicable within basic research (solid continuum mechanics, theoretical physics, materials science, etc.) as well as within the practice of engineering.

Book Analytical Models of Thermal Stresses in Composite Materials IV

Download or read book Analytical Models of Thermal Stresses in Composite Materials IV written by Ladislav Ceniga and published by Nova Science Publishers. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the third volume in a series of books that present original results in the study of analytical models of thermal stresses in composite materials.

Book Thermal Stress Analysis of Undirectional Composite Material by FEM Modeling

Download or read book Thermal Stress Analysis of Undirectional Composite Material by FEM Modeling written by Gopal D. Gulwani and published by . This book was released on 2017 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micromechanics of composite is study of complex mechanism of stress and strain transfer between fiber and matrix within a composite as well as distributions of physical fields inside heterogeneous medium. It was used successfully in predicting accurately physical properties like effective stiffness, effective linear thermal expansion of heterogeneous materials like composite. However, when it comes to strength characteristics of composite especially in transversal direction it failed to predict more accurate results. This thesis is focused on thermally induced stress analysis of unidirectional composite by finite element method. Thermal stresses which are dangerously ignored factor in mechanics of composite usually occur due to difference in coefficient of thermal expansion between matrix and fiber within a composite. The distinction between other studies and this thesis is single cell is considered in most of the studies. But, this study not only focus on single cell but also takes into account effect of neighboring cells on the stress analysis of that cell. The results from the study is then compared with analytical models for single cell also for infinitely big regular array of inclusions in matrix. This study is useful in finding more accurate strength characteristics compared to studies done in the past.

Book Thermal Stress Analysis of Composite Beams  Plates and Shells

Download or read book Thermal Stress Analysis of Composite Beams Plates and Shells written by Erasmo Carrera and published by Academic Press. This book was released on 2016-11-25 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. - Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories - Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response - Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references - Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods - Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings

Book Stress Analysis of Fiber reinforced Composite Materials

Download or read book Stress Analysis of Fiber reinforced Composite Materials written by M. W. Hyer and published by DEStech Publications, Inc. This book was released on 2009 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.

Book Thermal Stress Analysis of Unidirectional Fiber Reinforced Composites

Download or read book Thermal Stress Analysis of Unidirectional Fiber Reinforced Composites written by and published by . This book was released on 1901 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite materials are widely used in temperature fluctuating environments, which make these materials highly prone to cracking. The cracking phenomenon is a result of high thermal stresses that are generated by the mismatch in properties of the composite constituents, particularly the mismatch in the thermal expansion coefficient. The main objective of this study is to understand the micromechanics of such a phenomenon. The problem has been investigated using the finite element method (FEM). The analyses were performed utilizing 3-D prism and axisymmetric models. Hexagonal fiber packing of unidirectional composites was considered. The dimensions of the models were assumed such that the models could provide sufficient information on the behavior near the free surface as well as the interior of fiber composites. Properties of the constituents were considered to be temperature dependent. The elasto-plastic and visco-elastic characteristics of the materials were also included. The transient thermal analysis of the models showed that, for most practical applications, the temperature gradient in the composite constituents has minor effects on the stresses generated. Therefore, several stress analyses were performed assuming a uniformly changing temperature throughout the composite. The elastic analysis of thermal stresses and deformations showed high radial and hoop stress concentrations occurring at the fiber end on the free surface. This is contrary to the shear-lag theorem, which assumes that these stress components are negligible. An overlapping hypothesis, based on the deformation of the fiber and matrix, is proposed to explain such high radial and hoop stresses. Using regular FEM elements, it was concluded that the stresses are singular in nature. The stress singularity was numerically investigated and found to be of the type r -á with á being dependent on the material properties but having a value close to 1/3. The elasto-visco-plastic behavior of composites was.

Book Thermal Stresses in Severe Environments

Download or read book Thermal Stresses in Severe Environments written by D. P. Hasselman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Thermal Stresses in ~~terials and Structures in Severe Thermal Environments constitutes the proceedings of an international conference held at Virginia Polytechnic Institute and State University in Blacksburg, Virginia, USA, on ~1arch 19, 20 and 21, 1980. The purpose of the conference was to bring together experts in the areas of heat transfer, theoretical and applied mechanics amd materials science and engineering, with a.common interest in the highly interdisciplinary nature of the thermal stress problem. It is the hope of the program chairmen that the resulting interac tion has led to a greater understanding of the underlying prin ciples of the thermal stress problem and to an improved design and selection of materials for structures subjected to high thermal stresses. The program chairmen gratefully acknowledge the financial assistance for the conference provided by the Department of Energy, the National Science Foundation, the Army Research Office and the Office of Naval Research as well as the Departments of Engineering Science and Mechanics and Materials Engineering at Virginia Poly technic Institute and State University. A number of professional societies also provided mailing lists for the program at no nominal cost The Associate Director, Mr. R. J. Harshberger and his staff at the Conference Center for Continuing Education at VPI and SU should be recognized especially for their coordination of the con ference activities, lunches and banquet. Provost John D. Wilson gave a most enlightening and provocative after-dinner speech.

Book Numerical Analysis and Modelling of Composite Materials

Download or read book Numerical Analysis and Modelling of Composite Materials written by J.W. Bull and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite materials are increasingly used in many applications because they offer the engineer a range of advantages over traditional materials. They are often used in situations where a specified level of performance is required, but where the cost of testing the materials under the extremes of those specifications is very high. In order to solve this problem, engineers are turning to computer Modelling to evaluate the materials under the range of conditions they are likely to encounter. Many of these analyses are carried out in isolation, and yet the evaluation of a range of composites can be carried out using the same basic principles. In this new book the editor has brought together an international panel of authors, each of whom is working on the analysis and Modelling of composite materials. The overage of the book is deliberately wide; to illustrate that similar principles and methods can be used to model and evaluate a wide range of materials. It is also hoped that, by bringing together this range of topics, the insight gained in the study of one composite can be recognized and utilized in the study of others. Professional engineers involved in the specification and testing of composite material structures will find this book an invaluable resource in the course of their work. It will also be of interest to those industrial and academic engineers involved in the design, development, manufacture and applications of composite materials.

Book Heat Transfer in Composite Materials

Download or read book Heat Transfer in Composite Materials written by Seiichi Nomura and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: ¿ New methods for determining temperature distributions in heterogeneous media, including composite materials¿ Offers unique tools to predict temperatures in steady-state and transient-state conditions¿ Connects analytical solutions for temperature distribution with thermal stress analysis

Book Thermal Stress Analysis of Beams  Plates and Shells

Download or read book Thermal Stress Analysis of Beams Plates and Shells written by Erasmo Carrera and published by Academic Press. This book was released on 2015-09-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Stress Analysis of Beams, Plates and Shells presents classic and advanced thermal stress topics in a cutting-edge review of this critical area. Tackling subjects with little coverage in existing resources, the book considers complex problems, including multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. The text then progresses to more challenging topics, including multilayered, anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories Of particular interest to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references Covers metallic and composite structures, including a complete analysis of layered structures, and considers both mesh and meshless methods Sample problems throughout the text cover both metallic and composite structures, accounting for both mesh and meshless methods Valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings

Book Analysis of process induced distortions and residual stresses of composite structures

Download or read book Analysis of process induced distortions and residual stresses of composite structures written by Christian Brauner and published by Logos Verlag Berlin GmbH. This book was released on 2013 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increased application of composite materials in lightweight structures leads to new integral design of structural parts, using the example of, an integral composite landing flap of an Airbus A320 aircraft. This offers possibilities to simplify the process chain, to decrease manufacturing costs and to have fibre fair structural design. The critical disadvantage of large integral designs is that process-induced deformations are a risk factor during the design phase of the manufacturing process, because rework is not always possible. Especially, the aircraft industry with its demands on high qualities / tolerances and the application of hot curing resin systems, requires knowledge-based methods for virtual process design to avoid time- and effort-consuming iterations. This thesis contributes to the understanding of the mechanism behind process-induced distortions and stresses related to the Resin Transfer Moulding (RTM) manufacturing process. The aim is to comprehend the phenomena, to identify related parameters and to present compensation strategies.

Book Finite Element and Analytical Models for Load Transfer Calculations for Structures Utilizing Metal and Composites with Large CTE Differences

Download or read book Finite Element and Analytical Models for Load Transfer Calculations for Structures Utilizing Metal and Composites with Large CTE Differences written by Uday Sankar Meka and published by . This book was released on 2007 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Author abstract] Large composite structures have been increasingly used in the aviation industry. In order to achieve higher fuel efficiency, the use of light-weight, high-strength composite materials, such as carbon/epoxy, needs to be fully explored. New applications of composite materials include primary structures such as aircraft fuselages. This study dealt with thermal stresses induced in a composite aircraft fuselage, in which the fuselage skin was made of carbon/epoxy composite and was fastened to aluminum beams. These stresses resulted from the large coefficient of thermal expansion (CTE) difference and also the large temperature difference between the time of assembly, which was 75°F and the actual flight condition, which was -65°F). This temperature difference of around 140°F induced high thermal stresses, not only in the fasteners but also in the aluminum beams and composite panels. The two main objectives of the study are as follows: (1) to investigate the thermally induced stresses in the aluminum beams; (2) to investigate the feasibility of thermally isolating the aluminum beams from the composite fuselage skins. An experimental program was conducted to measure the strains on the top surface of an aluminum beam, which was fastened to the composite panel from thermal loads due to temperature difference and CTE mismatch. An approach was also designed to study the effects of the length of the aluminum beam on stresses. An analytical model was developed to evaluate the fastener load transfer and the thermally induced stress within the fastened aluminum/composite assemblies. Five parameters were used to develop an analytical model to calculate the load transfer between the aluminum/composite hybrid structures: equivalent area of the aluminum beam and composite panel, equivalent temperatures of the aluminum beam and composite panel, and equivalent fastener stiffness were determined using three-dimensional finite element analysis. An attempt has been made to study the effect of fastener diameter, fastener spacing, material of the metallic beam, size of the metallic beam, thickness of the composite panel on the five parameters required to find the load transfer so that a relation could be established for a working engineer to determine these parameters without doing any finite element work. Equations correlating the five parameters with geometric and material properties were provided.

Book Residual Stresses in Composite Materials

Download or read book Residual Stresses in Composite Materials written by Mahmood M. Shokrieh and published by Woodhead Publishing. This book was released on 2021-06-22 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The residual stress is a common phenomenon in composite materials. They can either add to or significantly reduce material strength. Because of the increasing demand for high-strength, lightweight materials such as composites and their wide range of applications; it is critical that the residual stresses of composite materials are understood and measured correctly.The first edition of this book consists of thirteen chapters divided into two parts. The first part reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses. There are also additional chapters on using mathematical (analytical and numerical) methods for the calculation of residual stresses in composite materials. These include the simulated hole drilling method, the slitting/crack compliance method, measuring residual stresses in homogeneous and composite glass materials using photoelastic techniques, and modeling residual stresses in composite materials. The second part of the book discusses measuring residual stresses in different types of composites including polymer and metal matrix composites. The addition of nanoparticles to the matrix of polymeric composites as a new technique for the reduction of residual stresses is also discussed.In the Second Edition of this book, each of the original chapters of the first edition has been fully updated, taking into account the latest research and new developments. There are also five new chapters on the theoretical and experimental studies of residual stresses in the composite integrated circuits; residual stresses in additive manufacturing of polymers and polymer matrix composites; residual stresses in metal matrix composites fabricated by additive manufacturing; the eigenstrain based method for the incremental hole-drilling technique; and the estimation of residual stresses in polymer matrix composites using the digital image correlation technique.Residual Stresses in Composite Materials, Second Edition, provides a unique and comprehensive overview of this important topic and is an invaluable reference text for both academics and professionals working in the mechanical engineering, civil engineering, aerospace, automotive, marine, and sporting industries. - Presents the latest developments on theoretical and experimental studies of residual stresses in composites - Reviews destructive and non-destructive testing (NDT) techniques for measuring residual stresses - Discusses residual stresses in the polymer matrix, metal matrix, and ceramic matrix composites - Considers the addition of nanoparticles to the matrix as a new technique for reduction of residual stresses in polymeric composites - Introduces the latest advancements of research on the residual stresses in additive-manufactured polymer and metal matrix composites

Book Thermal Stresses IV

Download or read book Thermal Stresses IV written by Richard B. Hetnarski and published by North Holland. This book was released on 1996 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hardbound. This is the fourth volume of the handbook Thermal Stresses. Following the principles established when the first volume was published in 1986, the fourth volume consists of six separate chapters prepared by specialists in the field. Each chapter is devoted to a different topic in the area of Thermal Stresses. Many results have been published for the first time in Thermal Stresses IV. The exposition of the material is on the state-of-the art level, which should be appropriate for graduate students, researchers, and engineers specializing in the field of stress analysis. In most cases the material is presented with some historical perspective.A large number of references provided will allow the readers to augment their knowledge, after studying a particular chapter.