EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analytical Modeling of Contaminant Transport and Horizontal Well Hydraulics

Download or read book Analytical Modeling of Contaminant Transport and Horizontal Well Hydraulics written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation is composed of three parts of major contributions. In Chapter II, we discuss analytical study of contaminant transport from a finite source in a finite-thickness aquifer. This chapter provides analytical solutions of contaminant transport from one-, two-, and three-dimensional finite sources in a finite-thickness aquifer using Green's function method. A library of unpublished analytical solutions with different finite source geometry is provided. A graphically integrated software CTINT is developed to calculate the temporal integrations in the analytical solutions and obtain the final solutions of concentration. In Chapter III, we obtained solutions of groundwater flow to a finite-diameter horizontal well including wellbore storage and skin effect in a three-dimensionally anisotropic leaky aquifer. These solutions improve previous line source solutions by considering realistic well geometry and offer better description of drawdown near the horizontal well. These solutions are derived on the basis of the separation of the source and the geometric functions. The graphically integrated computer program FINHOW is written to generate type curves of groundwater flow to a finite-diameter horizontal well. The influence of the finite-diameter of the well, the wellbore storage, the skin effect, the leakage parameter, and the aquifer anisotropy is thoroughly analyzed. In Chapter IV, a general theory of groundwater flow to a fractured or non-fractured aquifer considering wellbore storage and skin effect is provided. Solutions for both leaky confined and water table aquifers are provided. The fracture model used in this study is the standard double-porosity model. The storage of the aquitard (the leaky confining layer) is included in the formula. A program denoted FINHOW2 is written to facilitate the calculation. Sensitivity of the solution to the confined versus unconfined conditions, fractured versus non-fractured conditions, and wellbore storage and skin effects is analyzed.

Book Analytical Modeling of Solute Transport in Groundwater

Download or read book Analytical Modeling of Solute Transport in Groundwater written by Mark Goltz and published by John Wiley & Sons. This book was released on 2017-02-28 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaches, using simple analytical models how physical, chemical, and biological processes in the subsurface affect contaminant transport Uses simple analytical models to demonstrate the impact of subsurface processes on the fate and transport of groundwater contaminants Includes downloadable modeling tool that provides easily understood graphical output for over thirty models Modeling tool and book are integrated to facilitate reader understanding Collects analytical solutions from many sources into a single volume and, for the interested reader, shows how these solutions are derived from the governing model equations

Book Modelling Hydrology  Hydraulics and Contaminant Transport Systems in Python

Download or read book Modelling Hydrology Hydraulics and Contaminant Transport Systems in Python written by Soumendra Nath Kuiry and published by CRC Press. This book was released on 2024-10-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book presents the theoretical aspects of surface and ground water hydraulics, contaminant transport, hydrological and water resource systems. It explains the solution approaches to solve the required analytical and partial differential equations through computer codes and their applications. The codes are based on the Python computational platform.

Book Modeling Groundwater Flow and Contaminant Transport

Download or read book Modeling Groundwater Flow and Contaminant Transport written by Jacob Bear and published by Springer Science & Business Media. This book was released on 2010-01-18 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use, and contamination. To face the challenge, good planning and management practices are needed. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface. The purpose of this book is to construct conceptual and mathematical models that can provide the information required for making decisions associated with the management of groundwater resources, and the remediation of contaminated aquifers. The basic approach of this book is to accurately describe the underlying physics of groundwater flow and solute transport in heterogeneous porous media, starting at the microscopic level, and to rigorously derive their mathematical representation at the macroscopic levels. The well-posed, macroscopic mathematical models are formulated for saturated, single phase flow, as well as for unsaturated and multiphase flow, and for the transport of single and multiple chemical species. Numerical models are presented and computer codes are reviewed, as tools for solving the models. The problem of seawater intrusion into coastal aquifers is examined and modeled. The issues of uncertainty in model input data and output are addressed. The book concludes with a chapter on the management of groundwater resources. Although one of the main objectives of this book is to construct mathematical models, the amount of mathematics required is kept minimal.

Book Groundwater Contaminant Transport

Download or read book Groundwater Contaminant Transport written by F.B.J. Barends and published by Routledge. This book was released on 2017-07-12 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Impacts of developed tools of heterogenous characterization on the hydrodynamics of flow and the transport mechanisms are illustrated in this text through a series of extensive numerical simulations consisting of single and multiple-realizations (Monte Carlo method).

Book Analytical Modeling of Multi Fractured Horizontal Wells in Heterogeneous Unconventional Reservoirs

Download or read book Analytical Modeling of Multi Fractured Horizontal Wells in Heterogeneous Unconventional Reservoirs written by Jie Zeng and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current analytical models for multi-fractured horizontal wells (MFHW) generally neglect reservoir heterogeneity, typical seepage characters of unconventional reservoir, partially penetrating fracture and various fracture damage mechanisms. In this thesis, three linear flow models have been developed to facilitate pressure and rate behavior analysis of shale, tight sand and unconventional reservoir with damaged fractures. These models are validated by comparing with KAPPA Ecrin and are more accurate than previous linear flow models in modeling partially penetrating cases. Field data are analyzed and results prove the reliability of these models. The first model is for heterogeneous shale reservoir with multiple gas transport mechanisms. It subdivides the reservoir into seven parts, namely, two upper/lower regions, two outer regions, two inner regions, and hydraulic fracture region. Fracture interference is simulated by locating a no-flow boundary between two adjacent fractures. The locations of these boundaries are determined based on the boundary's pressure to satisfy the no-flow assumption. Adsorption/desorption, gas slippage and diffusion effects are included for rigorous modeling of flow in shale. Sensitivity analysis results suggest that larger desorption coefficient causes smaller pressure and its derivative as a larger proportion of gas is desorbed in formation and contributes to productivity. The influences of other parameters, such as matrix II permeability, matrix block size, secondary fracture permeability, hydraulic fracture conductivity, and fracture pattern are also discussed. The second model is for heterogeneous tight sand reservoir with threshold pressure gradient (TPG). The linear flow sub-regions are the same as those of the first model. TPG and pressure drop within the horizontal wellbore are included. Simulation results suggest that TPG affects middle-late time behaviors. Greater TPG results in higher pressure drop and accelerates production decline. But this influence is marginal when TPG is small. Effects of other parameters, such as formation permeability, fracture length, conductivity, and wellbore storage are also investigated. The third model is for heterogeneous reservoir with various fracture damage. In this model, the following possible fracture damage situations are discussed: (1) choked fracture damage (2) partially propped fracture, (3) fracturing fluid leak-off damage, (4) dual or multiple damage effects. Simulation results indicate that choked frature damage influences early-mid time performance. Partially propped section within fracture dominates formation linear flow regime. Only severe matrix impairment near fracture face can have noticeable effects on pressure and rate response. A new parameter, skin factor ratio, is applied to describe the relative magnitude of multiple damage mechanisms. Reservoir heterogeneity and fracture damage make the pressure and rate behaviors deviate significantly from undamaged one but one can distinguish major damage mechanisms even in heterogeneous reservoir.

Book Handbook of Ground Water Development

Download or read book Handbook of Ground Water Development written by Roscoe Moss Company and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive work on the subject, it offers you comprehensive and accurate coverage of the theory and techniques of ground water development. Provides not only a general overview of the topic with applications but also incorporates sufficient detail to be of use to professionals involved in any phase of ground water. Divided into three parts, the text traces the progression of the study of ground water from its origin through its development and exploitation. Part one deals mainly with the nature of ground water and where it can be found. Part two considers the parameters related to water well design and construction. In part three, there is a thorough review of well and well field operation, including monitoring for environmental protection. Although the focus is on high-capacity ground water producing installations, most of the material is also applicable to lower-yield wells.

Book Scientific Investigations Report

Download or read book Scientific Investigations Report written by Sharon E. Kroening and published by . This book was released on 2004 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hydrogeology and Groundwater Modeling  Second Edition

Download or read book Hydrogeology and Groundwater Modeling Second Edition written by Neven Kresic and published by CRC Press. This book was released on 2006-10-26 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coupling the basics of hygrogeology with analytical and numerical modeling methods, Hydrogeology and Groundwater Modeling, Second Edition provides detailed coverage of both theory and practice. Written by a leading hydrogeologist who has consulted for industry and environmental agencies and taught at major universities around the world, this unique book fills a gap in the groundwater hydrogeology literature. With more than 40 real-world examples, the book is a source for clear, easy-to-understand, and step-by-step quantitative groundwater evaluation and contaminant fate and transport analysis, from basic laboratory determination to complex analytical calculations and computer modeling. It provides more than 400 drawings, graphs, and photographs, and a variety of useful tables of all key groundwater parameters, as well as lucid, straightforward answers to common hydrogeological problems. Reflecting nearly ten years of new scholarship since the publication of the bestselling first edition, this second edition is wider in focus with added and updated examples, figures, and problems, yet still provides information in the author's trademark, user-friendly style. No other book offers such carefully selected examples and clear, elegantly explained solutions. The inclusion of step-by-step solutions to real problems builds a knowledge base for understanding and solving groundwater issues.

Book Modeling and Stochastic Analysis of Contaminant Transport in Soils and Aquifers

Download or read book Modeling and Stochastic Analysis of Contaminant Transport in Soils and Aquifers written by Mohamed Mahdi Hantush and published by . This book was released on 1996 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Subsurface Hydrology

Download or read book Computational Subsurface Hydrology written by Gour-Tsyh (George) Yeh and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Any numerical subsurface model is comprised of three components: a theoretical basis to translate our understanding phenomena into partial differential equations and boundary conditions, a numerical method to approximate these governing equations and implement the boundary conditions, and a computer implementation to generate a generic code for research as well as for practical applications. Computational Subsurface Hydrology: Reactions, Transport, and Fate is organized around these themes. The fundamental processes occurring in subsurface media are rigorously integrated into governing equations using the Reynolds transport theorem and interactions of these processes with the surrounding media are sophisticatedly cast into various types of boundary conditions using physical reasoning. A variety of numerical methods to deal with reactive chemical transport are covered in Computational Subsurface Hydrology: Reactions, Transport, and Fate with a particular emphasis on the adaptive local grid refinement and peak capture using the Lagrangian-Eulerian approach. The topics on coupled fluid flows and reactive chemical transport are unique contributions of this book. They serve as a reference for research as well as for practical applications with a computer code that can be purchased from the author. Four computer codes to simulate vertically integrated horizontal solute transport (LEMA), contaminant transport in moving phreatic aquifers in three dimensions (3DLEMA), solute transport in variably saturated flows in two dimensions (LEWASTE), and solute transport under variably saturated flows in three dimensions (3DLEWASTE) are covered. These four computer codes are designed for generic applications to both research and practical problems. They could be used to simulate most of the practical, real-world field problems. Reactive chemical transport and its coupling with fluid flows are unique features in this book. Theories, numerical implementations, and example problems of coupled reactive transport and flows in variably saturated media are presented. A generic computer code, HYDROGEOCHEM 3.0, is developed. A total of eight example problems are used to illustrate the application of the computational model. These problems are intended to serve as examples for setting up a variety of simulations that one may encounter in research and field-site applications. Computational Subsurface Hydrology: Reactions, Transport, and Fate offers practicing engineers and scientists a theoretical background, numerical methods, and computer codes for modeling contaminant transport in subsurface media. It also serves as a textbook for senior and graduate course on reactive chemical transport in subsurface media in disciplines such as civil and environmental engineering, agricultural engineering, geosciences, soil sciences, and chemical engineering. Computational Subsurface Hydrology: Reactions, Transport, and Fate presents a systematic derivation of governing equations and boundary conditions of subsurface contaminant transport as well as reaction-based geochemical and biochemical processes. It discusses a variety of numerical methods for moving sharp-front problems, expounds detail procedures of constructing Lagrangian-Eulerian finite element methods, and describes precise implementation of computer codes as they are applied to subsurface contaminant transport and biogeochemical reactions.

Book Plans and Practices for Groundwater Protection at the Los Alamos National Laboratory

Download or read book Plans and Practices for Groundwater Protection at the Los Alamos National Laboratory written by National Research Council and published by National Academies Press. This book was released on 2007-10-18 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world's first nuclear bomb was a developed in 1954 at a site near the town of Los Alamos, New Mexico. Designated as the Los Alamos National Laboratory (LANL) in 1981, the 40-square-mile site is today operated by Log Alamos National Security LLC under contract to the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Like other sites in the nation's nuclear weapons complex, the LANL site harbors a legacy of radioactive waste and environmental contamination. Radioactive materials and chemical contaminants have been detected in some portions of the groundwater beneath the site. Under authority of the U.S. Environmental Protection Agency, the State of New Mexico regulates protection of its water resources through the New Mexico Environment Department (NMED). In 1995 NMED found LANL's groundwater monitoring program to be inadequate. Consequently LANL conducted a detailed workplan to characterize the site's hydrogeology in order to develop an effective monitoring program. The study described in Plans and Practices for Groundwater Protection at the Los Alamos National Laboratory: Final Report was initially requested by NNSA, which turned to the National Academies for technical advice and recommendations regarding several aspects of LANL's groundwater protection program. The DOE Office of Environmental Management funded the study. The study came approximately at the juncture between completion of LANL's hydrogeologic workplan and initial development of a sitewide monitoring plan.

Book Applied Contaminant Transport Modeling

Download or read book Applied Contaminant Transport Modeling written by Chunmiao Zheng and published by Wiley. This book was released on 1995-08-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Contaminant Transport Modeling Theory and Practice Chunmiao Zheng and Gordon D. Bennett The design of remedial systems for groundwater contamination requires a thorough understanding of how various interacting processes — advection, dispersion, and chemical reactions — influence the movement and fate of contaminants. Solute transport simulation provides an ideal vehicle to synthesize these controlling processes, evaluate their interactions, and test the effectiveness of remedial measures. Applied Contaminant Transport Modeling is the first complete resource designed to provide clear coverage of the basic principles of solute transport simulation — including the theory behind the most common numerical techniques for solving transport equations, and step-by-step guidance on the development and use of field-scale models. Written by two experts with extensive practical experience in the field, Applied Contaminant Transport Modeling clearly explains: Factors controlling the transport and fate of solutes in the subsurface —g including advective and dispersive transport and chemical reaction — and the equations governing these processes Development of mathematical models of solute transport regimes and representative analytical solutions to the transport equation Particle tracking as a practical tool for solving many types of field problems Development of Eulerian-Lagrangian methods for solving advection-dispersion-reaction equations Step-by-step development and application of solute transport models — emphasizing problem formulation, model setup, parameter selection, calibration, and sensitivity analysis Sources of uncertainty in transport simulation, and methods of evaluating and managing uncertainty Applied Contaminant Transport Modeling presents detailed case histories illustrating how hydrologists, geologists, chemists, and environmental engineers apply transport models in real-life situations, including landfills, hazardous waste sites, and contaminated aquifers. An optional diskette designed to accompany the text provides software to help the reader explore the concepts and techniques presented in the text and gain hands-on experience in transport simulation. Driven by growing concern over groundwater quality and the rapid dissemination of computer technology, solute transport simulation has become an essential means of evaluating and solving groundwater contamination and remediation problems. Applied Contaminant Transport Modeling provides you with the tools to master this significant field of study.