EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analytical Fuel Cell Modelling and Exergy Analysis of Fuel Cells

Download or read book Analytical Fuel Cell Modelling and Exergy Analysis of Fuel Cells written by Franciscus Rudolphus Antonius Maria Standaert and published by . This book was released on 1998 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analytical Fuel Cell Modelling and Exergy Analysis of Fuel Cells

Download or read book Analytical Fuel Cell Modelling and Exergy Analysis of Fuel Cells written by Franciscus Rudolphus Antonius Maria Standaert and published by . This book was released on 1998 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analytical Modelling of Fuel Cells

Download or read book Analytical Modelling of Fuel Cells written by Andrei A. Kulikovsky and published by Elsevier. This book was released on 2019-05-03 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Modelling of Fuel Cells, Second Edition, is devoted to the analytical models that help us understand the mechanisms of cell operation. The book contains equations for the rapid evaluation of various aspects of fuel cell performance, including cell potential, rate of electrochemical reactions, rate of transport processes in the cell, and temperature fields in the cell, etc. Furthermore, the book discusses how to develop simple physics-based analytical models. A new chapter is devoted to analytical models of PEM fuel cell impedance, a technique that exhibits explosive growth potential. Finally, the book contains Maple worksheets implementing some of the models discussed. Includes simple physics-based equations for the fuel cell polarization curve Provides analytical solutions for fuel cell impedance Includes simple equations for calculation of temperature shapes in fuel cells Introduces physical descriptions of the basic transport and kinetic phenomena in fuel cells of various types

Book Fuel Cells

Download or read book Fuel Cells written by Bei Gou and published by CRC Press. This book was released on 2017-12-19 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cells: Modeling, Control, and Applications describes advanced research results on modeling and control designs for fuel cells and their hybrid energy systems. Filled with simulation examples and test results, it provides detailed discussions on fuel cell modeling, analysis, and nonlinear control. The book begins with an introduction to fuel cells and fuel cell power systems as well as the fundamentals of fuel cell systems and their components. It then presents the linear and nonlinear modeling of fuel cell dynamics, before discussing typical approaches of linear and nonlinear modeling and control design methods for fuel cells. The authors also explore the Simulink implementation of fuel cells, including the modeling of PEM fuel cells and control designs. They cover the applications of fuel cells in vehicles, utility power systems, stand-alone systems, and hybrid renewable energy systems. The book concludes with the modeling and analysis of hybrid renewable energy systems, which integrate fuel cells, wind power, and solar power. Mathematical preliminaries on linear and nonlinear control are provided in an appendix. With the need for alternative power well established, we are seeing unprecedented research in fuel cell technology. Written by scientists directly involved with the research, this book presents approaches and achievements in the linear and nonlinear modeling and control design of PEM fuel cells.

Book Fuel Cell Science and Engineering  2 Volume Set

Download or read book Fuel Cell Science and Engineering 2 Volume Set written by Detlef Stolten and published by John Wiley & Sons. This book was released on 2012-05-21 with total page 1298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers. This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government. This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes, modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book 'Hydrogen and Fuel Cells', published in 2010.

Book Hybrid Systems Based on Solid Oxide Fuel Cells

Download or read book Hybrid Systems Based on Solid Oxide Fuel Cells written by Mario L. Ferrari and published by John Wiley & Sons. This book was released on 2017-06-12 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the modelling and design of solid oxide fuel cell hybrid power plants This book explores all technical aspects of solid oxide fuel cell (SOFC) hybrid systems and proposes solutions to a range of technical problems that can arise from component integration. Following a general introduction to the state-of-the-art in SOFC hybrid systems, the authors focus on fuel cell technology, including the components required to operate with standard fuels. Micro-gas turbine (mGT) technology for hybrid systems is discussed, with special attention given to issues related to the coupling of SOFCs with mGTs. Throughout the book emphasis is placed on dynamic issues, including control systems used to avoid risk conditions. With an eye to mitigating the high costs and risks incurred with the building and use of prototype hybrid systems, the authors demonstrate a proven, economically feasible approach to obtaining important experimental results using simplified plants that simulate both generic and detailed system-level behaviour using emulators. Computational models and experimental plants are developed to support the analysis of SOFC hybrid systems, including models appropriate for design, development and performance analysis at both component and system levels. Presents models for a range of size units, technology variations, unit coupling dynamics and start-up and shutdown behaviours Focuses on SOFCs integration with mGTs in light of key constraints and risk avoidance issues under steady-state conditions and during transient operations Identifies interaction and coupling problems within the GT/SOFC environment, including exergy analysis and optimization Demonstrates an economical approach to obtaining important experimental results while avoiding high-cost components and risk conditions Presents analytical/computational and experimental tools for the efficient design and development of hardware and software systems Hybrid Systems Based on Solid Oxide Fuel Cells: Modelling and Design is a valuable resource for researchers and practicing engineers involved in fuel cell fundamentals, design and development. It is also an excellent reference for academic researchers and advanced-level students exploring fuel cell technology.

Book Fuel Cell Modeling and Simulation

Download or read book Fuel Cell Modeling and Simulation written by Gholam Reza Molaeimanesh and published by Elsevier. This book was released on 2022-11-12 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cell Modeling and Simulation: From Micro-Scale to Macro-Scale provides a comprehensive guide to the numerical model and simulation of fuel cell systems and related devices, with easy-to-follow instructions to help optimize analysis, design and control. With a focus on commercialized PEM and solid-oxide fuel cells, the book provides decision-making tools for each stage of the modeling process, including required accuracy and available computational capacity. Readers are guided through the process of developing bespoke fuel cell models for their specific needs. This book provides a step-by-step guide to the fundamentals of fuel cell modeling that is ideal for students, researchers and industry engineers working with fuel cell systems, but it will also be a great repository of knowledge for those involved with electric vehicles, batteries and computational fluid dynamics. Offers step-by-step guidance on the simulation of PEMFC and SOFC Provides an appendix of source codes for modeling, simulation and optimization algorithms Addresses the fundamental thermodynamics and reaction kinetics of fuel cells, fuel cell electric vehicles (FCEVs) and fuel cell power plant chapters

Book Fuel Cells

Download or read book Fuel Cells written by Bei Gou and published by CRC Press. This book was released on 2016-08-05 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes advanced research results on Modeling and Control designs for Fuel Cells and their hybrid energy systems. Filled with simulation examples and test results, it provides detailed discussions on Fuel Cell Modeling, Analysis, and Nonlinear control. Beginning with an introduction to Fuel Cells and Fuel Cell Power Systems, as well as the fundamentals of Fuel Cell Systems and their components, it then presents the Linear and Nonlinear modeling of Fuel Cell Dynamics. Typical approaches of Linear and Nonlinear Modeling and Control Design methods for Fuel Cells are also discussed. The authors explore the Simulink implementation of Fuel Cells, including the modeling of PEM Fuel Cells and Control Designs. They cover the applications of Fuel cells in vehicles, utility power systems, and stand-alone systems, which integrate Fuel Cells, Wind Power, and Solar Power. Mathematical preliminaries on Linear and Nonlinear Control are provided in an appendix.

Book Proton Exchange Membrane Fuel Cells

Download or read book Proton Exchange Membrane Fuel Cells written by Alhussein Albarbar and published by Springer. This book was released on 2017-11-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells’ static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.

Book Modelling and Process Control of Fuel Cell Systems

Download or read book Modelling and Process Control of Fuel Cell Systems written by Mohd Azlan Hussain and published by MDPI. This book was released on 2021-03-25 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Special Issue, we have several papers related to fuel-cell-based cogeneration systems; the management and control of fuel cell systems; the analysis, simulation, and operation of different types of fuel cells; modelling and online experimental validation; and the environment assessment of cathode materials in lithium-ion battery energy generation systems. A paper which gives a comprehensive review with technical guidelines for the design and operation of fuel cells, especially in a cogeneration system setup, which can be an important source of references for the optimal design and operation of various types of fuel cells in cogeneration systems, can also be found in this Special Issue.

Book Device and Materials Modeling in PEM Fuel Cells

Download or read book Device and Materials Modeling in PEM Fuel Cells written by Stephen J. Paddison and published by Springer Science & Business Media. This book was released on 2008-10-15 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational studies on fuel cell-related issues are increasingly common. These studies range from engineering level models of fuel cell systems and stacks to molecular level, electronic structure calculations on the behavior of membranes and catalysts, and everything in between. This volume explores this range. It is appropriate to ask what, if anything, does this work tell us that we cannot deduce intuitively? Does the emperor have any clothes? In answering this question resolutely in the affirmative, I will also take the liberty to comment a bit on what makes the effort worthwhile to both the perpetrator(s) of the computational study (hereafter I will use the blanket terms modeler and model for both engineering and chemical physics contexts) and to the rest of the world. The requirements of utility are different in the two spheres. As with any activity, there is a range of quality of work within the modeling community. So what constitutes a useful model? What are the best practices, serving both the needs of the promulgator and consumer? Some of the key com- nents are covered below. First, let me provide a word on my ‘credentials’ for such commentary. I have participated in, and sometimes initiated, a c- tinuous series of such efforts devoted to studies of PEMFC components and cells over the past 17 years. All that participation was from the experim- tal, qualitative side of the effort.

Book Fuel Cells

    Book Details:
  • Author : Shripad T. Revankar
  • Publisher : CRC Press
  • Release : 2016-04-19
  • ISBN : 1482235412
  • Pages : 714 pages

Download or read book Fuel Cells written by Shripad T. Revankar and published by CRC Press. This book was released on 2016-04-19 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cells: Principles, Design, and Analysis considers the latest advances in fuel cell system development and deployment, and was written with engineering and science students in mind. This book provides readers with the fundamentals of fuel cell operation and design, and incorporates techniques and methods designed to analyze different fuel cell

Book Mechanical Analysis of PEM Fuel Cell Stack Design

Download or read book Mechanical Analysis of PEM Fuel Cell Stack Design written by Ahmet Evren Firat and published by Cuvillier Verlag. This book was released on 2016-06-02 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer electrolyte membrane (PEM) fuel cell stack was analyzed from a mechanical point of view with the help of measurements and simulations in this study. The deflection of the fuel cell stack was measured with the help of the experimental set-up under operating conditions. The effects of cell operating parameters and cyclic conditions on the mechanical properties of the fuel cell stack were investigated. In order to extend the mechanical analysis of the fuel cells, two computational models were established containing the geometrical features in detail. A large-scale fuel cell stack model was built for the thermomechanical analysis. The second model was built on a cross-section geometry for the electrochemical analysis including fluid dynamics. The internal stress distribution and buckling of fuel cell stack were examined. The influence of the mechanical compression on the cell performance and squeezing of the gas diffusion layers are investigated. A design procedure is developed for fuel cell stack regarding the durability and performance from a mechanical point of view.

Book Advances in Fuel Cells

Download or read book Advances in Fuel Cells written by and published by Elsevier. This book was released on 2007-04-23 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cells have been recognized to be destined to form the cornerstone of energy technologies in the twenty-first century. The rapid advances in fuel cell system development have left current information available only in scattered journals and Internet sites. Advances in Fuel Cells fills the information gap between regularly scheduled journals and university level textbooks by providing in-depth coverage over a broad scope. The present volume provides informative chapters on thermodynamic performance of fuel cells, macroscopic modeling of polymer-electrolyte membranes, the prospects for phosphonated polymers as proton-exchange fuel cell membranes, polymer electrolyte membranes for direct methanol fuel cells, materials for state of the art PEM fuel cells, and their suitability for operation above 100°C, analytical modelling of direct methanol fuel cells, and methanol reforming processes. Includes contributions by leading experts working in both academic and industrial R&D Disseminates the latest research discoveries A valuable resource for senior undergraduates and graduate students, it provides in-depth coverage over a broad scope

Book Modeling and Control of Fuel Cells

Download or read book Modeling and Control of Fuel Cells written by M. H. Nehrir and published by John Wiley & Sons. This book was released on 2009-03-11 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only book available on fuel cell modeling and control with distributed power generation applications The emerging fuel cell (FC) technology is growing rapidly in its applications from small-scale portable electronics to large-scale power generation. This book gives students, engineers, and scientists a solid understanding of the FC dynamic modeling and controller design to adapt FCs to particular applications in distributed power generation. The book begins with a fascinating introduction to the subject, including a brief history of the U.S. electric utility formation and restructuring. Next, it provides coverage of power deregulation and distributed generation (DG), DG types, fuel cell DGs, and the hydrogen economy. Building on that foundation, it covers: Principle operations of fuel cells Dynamic modeling and simulation of PEM and solid-oxide fuel cells Principle operations and modeling of electrolyzers Power electronic interfacing circuits for fuel cell applications Control of grid-connected and stand-alone fuel cell power generation systems Hybrid fuel cell–based energy system case studies Present challenges and the future of fuel cells MATLAB/SIMULINK-based models and their applications are available via a companion Web site. Modeling and Control of Fuel Cells is an excellent reference book for students and professionals in electrical, chemical, and mechanical engineering and scientists working in the FC area.

Book Fuel Cells  Engines and Hydrogen

Download or read book Fuel Cells Engines and Hydrogen written by Frederick J. Barclay and published by John Wiley & Sons. This book was released on 2006-07-11 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel cell technology is the most exciting and legitimate alternative source of power currently available to us as world resources of non-renewable fuel continue to be depleted. No other power generating technology holds the same benefits that fuel cells offer, including high reliability and efficiency, negligible environmental impact, and security of supply. Fuel cells run on hydrogen – the simplest and most plentiful gas in the universe - although they can also run on carbon monoxide, methane, or even coal. Their applications are diverse, from powering automobiles, buildings and portable electronics, to converting methane gas from wastewater plants and landfills into electricity. Fuel Cells, Engines and Hydrogen is a controversial text that challenges the accepted industry parameters for measuring fuel cell performance and efficiency. Based on his inter-disciplinary experience in the fields of power, nuclear power, and desalination, the author contends that the development potential of the fuel cell is related to the quantity fuel chemical exergy, which, like electrical potential, is a quantitative measure of work done. The fuel cell community currently characterises these devices in terms of the enthalpy of combustion (calorific value) – however the author argues a correct, qualitatively different and fourfold larger characterisation is via the fuel chemical exergy, in units of work, and not energy. He asserts that the distortion introduced by this accepted perspective needs to be corrected before relatively efficient fuel cells, integrated with comparatively low performing gas turbines, reach the market. Fuel Cells, Engines and Hydrogen features a foreword by Dr Gerry Agnew, Executive VP Engineering of Rolls Royce Fuel Cells Systems Ltd. It is essential reading for all engineers involved with fuel cells and/ or the manufacture of hydrogen from natural gas, as well as academics in related disciplines such as thermodynamics, physical chemistry, materials, physics, mechanical and chemical engineering.

Book Fuel Cell Fundamentals

    Book Details:
  • Author : Ryan O'Hayre
  • Publisher : John Wiley & Sons
  • Release : 2016-05-02
  • ISBN : 1119113806
  • Pages : 612 pages

Download or read book Fuel Cell Fundamentals written by Ryan O'Hayre and published by John Wiley & Sons. This book was released on 2016-05-02 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete, up-to-date, introductory guide to fuel cell technology and application Fuel Cell Fundamentals provides a thorough introduction to the principles and practicalities behind fuel cell technology. Beginning with the underlying concepts, the discussion explores fuel cell thermodynamics, kinetics, transport, and modeling before moving into the application side with guidance on system types and design, performance, costs, and environmental impact. This new third edition has been updated with the latest technological advances and relevant calculations, and enhanced chapters on advanced fuel cell design and electrochemical and hydrogen energy systems. Worked problems, illustrations, and application examples throughout lend a real-world perspective, and end-of chapter review questions and mathematical problems reinforce the material learned. Fuel cells produce more electricity than batteries or combustion engines, with far fewer emissions. This book is the essential introduction to the technology that makes this possible, and the physical processes behind this cost-saving and environmentally friendly energy source. Understand the basic principles of fuel cell physics Compare the applications, performance, and costs of different systems Master the calculations associated with the latest fuel cell technology Learn the considerations involved in system selection and design As more and more nations turn to fuel cell commercialization amidst advancing technology and dropping deployment costs, global stationary fuel cell revenue is expected to grow from $1.4 billion to $40.0 billion by 2022. The sector is forecasted to explode, and there will be a tremendous demand for high-level qualified workers with advanced skills and knowledge of fuel cell technology. Fuel Cell Fundamentals is the essential first step toward joining the new energy revolution.