EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis  Design  and Optimization of Embedded Control Systems

Download or read book Analysis Design and Optimization of Embedded Control Systems written by Amir Aminifar and published by Linköping University Electronic Press. This book was released on 2016-02-18 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and traditional embedded applications motivates the need for novel methodologies for the design and optimization of embedded control systems. This thesis is one more step towards correct design and optimization of embedded control systems. Offline and online methodologies for embedded control systems are covered in this thesis. The importance of considering both the expected control performance and stability is discussed and a control-scheduling co-design methodology is proposed to optimize control performance while guaranteeing stability. Orthogonal to this, bandwidth-efficient stabilizing control servers are proposed, which support compositionality, isolation, and resource-efficiency in design and co-design. Finally, we extend the scope of the proposed approach to non-periodic control schemes and address the challenges in sharing the platform with self-triggered controllers. In addition to offline methodologies, a novel online scheduling policy to stabilize control applications is proposed.

Book Optimal Design of Distributed Control and Embedded Systems

Download or read book Optimal Design of Distributed Control and Embedded Systems written by Arben Çela and published by Springer Science & Business Media. This book was released on 2013-11-29 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The authors also operate a control structure modification or a control switching based on a thorough analysis of the influence of the induced time-delay system influence on stability and system performance in order to optimize DCES performance in case of calculation and communication resource limitations. Although the richness and variety of classes of DCES preclude a completely comprehensive treatment or a single “best” method of approaching them all, this co-design approach has the best chance of rendering this problem feasible and finding the optimal or some sub-optimal solution. The text is rounded out with references to such applications as car suspension and unmanned vehicles. Optimal Design of Distributed Control and Embedded Systems will be of most interest to academic researchers working on the mathematical theory of DCES but the wide range of environments in which they are used also promotes the relevance of the text for control practitioners working in the avionics, automotive, energy-production, space exploration and many other industries.

Book Design of Embedded Control Systems

Download or read book Design of Embedded Control Systems written by Marian Andrzej Adamski and published by Springer Science & Business Media. This book was released on 2006-11-22 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: A set of original results in the ?eld of high-level design of logical control devices and systems is presented in this book. These concern different aspects of such important and long-term design problems, including the following, which seem to be the main ones. First, the behavior of a device under design must be described properly, and some adequate formal language should be chosen for that. Second, effective algorithmsshouldbeusedforcheckingtheprepareddescriptionforcorrectness, foritssyntacticandsemanticveri?cationattheinitialbehaviorlevel.Third,the problem of logic circuit implementation must be solved using some concrete technological base; ef?cient methods of logic synthesis, test, and veri?cation should be developed for that. Fourth, the task of the communication between the control device and controlled objects (and maybe between different control devices)waitsforitssolution.Alltheseproblemsarehardenoughandcannotbe successfully solved without ef?cient methods and algorithms oriented toward computer implementation. Some of these are described in this book. The languages used for behavior description have been descended usually from two well-known abstract models which became classic: Petri nets and ?nite state machines (FSMs). Anyhow, more detailed versions are developed and described in the book, which enable to give more complete information concerningspeci?cqualitiesoftheregardedsystems.Forexample,themodelof parallelautomatonispresented,whichunliketheconventional?niteautomaton can be placed simultaneously into several places, calledpartial. As a base for circuit implementation of control algorithms, FPGA is accepted in majority of cases.

Book Function Architecture Optimization and Co Design of Embedded Systems

Download or read book Function Architecture Optimization and Co Design of Embedded Systems written by Bassam Tabbara and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Function Architecture Co-Design is a new paradigm for the design and implementation of embedded systems. Function/Architecture Optimization and Co-Design of Embedded Systems presents the authors' work in developing a function/architecture optimization and co-design formal methodology and framework for control-dominated embedded systems. The approach incorporates both data flow and control optimizations performed on a suitable novel intermediate design task representation. The aim is not only to enhance productivity of the designer and system developer, but also to improve quality of the final synthesis outcome. Function/Architecture Optimization and Co-Design of Embedded Systems discusses the proposed function/architecture co-design methodology, focusing on design representation, optimization, validation, and synthesis. Throughout the text, the difference between behavior specification and implementation is emphasized. The current need in co-design to move from synthesis-based technology to compiler-based technology is pointed out. The authors describe and show how performing data flow and control optimizations at the high abstraction level can lead to significant size and performance improvements in both the synthesized hardware and software. The work builds on bodies of research in the silicon and software compilation domains. The aforementioned techniques are specialized to the embedded systems domain. It is recognized that guided optimization can be applied on the internal design representation, no matter what the abstraction level, and need not be restricted to the final stages of software assembly code generation, or hardware synthesis. Function/Architecture Optimization and Co-Design of Embedded Systems will be of primary interest to researchers, developers, and professionals in the field of embedded systems design.

Book Embedded Computing Systems  Applications  Optimization  and Advanced Design

Download or read book Embedded Computing Systems Applications Optimization and Advanced Design written by Khalgui, Mohamed and published by IGI Global. This book was released on 2013-04-30 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embedded computing systems play an important and complex role in the functionality of electronic devices. With our daily routines becoming more reliant on electronics for personal and professional use, the understanding of these computing systems is crucial. Embedded Computing Systems: Applications, Optimization, and Advanced Design brings together theoretical and technical concepts of intelligent embedded control systems and their use in hardware and software architectures. By highlighting formal modeling, execution models, and optimal implementations, this reference source is essential for experts, researchers, and technical supporters in the industry and academia.

Book Computational Complexity of some Optimization Problems in Planning

Download or read book Computational Complexity of some Optimization Problems in Planning written by Meysam Aghighi and published by Linköping University Electronic Press. This book was released on 2017-05-17 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computational complexity of planning. Finding new tractable (i.e. polynomial-time solvable) problems has been a particularly important goal for researchers in the area. The reason behind this is not only to differentiate between easy and hard planning instances, but also to use polynomial-time solvable instances in order to construct better heuristic functions and improve planners. We identify a new class of tractable cost-optimal planning instances by restricting the causal graph. We study the computational complexity of oversubscription planning (such as the net-benefit problem) under various restrictions and reveal strong connections with classical planning. Inspired by this, we present a method for compiling oversubscription planning problems into the ordinary plan existence problem. We further study the parameterized complexity of cost-optimal and net-benefit planning under the same restrictions and show that the choice of numeric domain for the action costs has a great impact on the parameterized complexity. We finally consider the parameterized complexity of certain problems related to partial-order planning. In some applications, less restricted plans than total-order plans are needed. Therefore, a partial-order plan is being used instead. When dealing with partial-order plans, one important question is how to achieve optimal partial order plans, i.e. having the highest degree of freedom according to some notion of flexibility. We study several optimization problems for partial-order plans, such as finding a minimum deordering or reordering, and finding the minimum parallel execution length.

Book System Level Analysis and Design under Uncertainty

Download or read book System Level Analysis and Design under Uncertainty written by Ivan Ukhov and published by Linköping University Electronic Press. This book was released on 2017-11-16 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: One major problem for the designer of electronic systems is the presence of uncertainty, which is due to phenomena such as process and workload variation. Very often, uncertainty is inherent and inevitable. If ignored, it can lead to degradation of the quality of service in the best case and to severe faults or burnt silicon in the worst case. Thus, it is crucial to analyze uncertainty and to mitigate its damaging consequences by designing electronic systems in such a way that they effectively and efficiently take uncertainty into account. We begin by considering techniques for deterministic system-level analysis and design of certain aspects of electronic systems. These techniques do not take uncertainty into account, but they serve as a solid foundation for those that do. Our attention revolves primarily around power and temperature, as they are of central importance for attaining robustness and energy efficiency. We develop a novel approach to dynamic steady-state temperature analysis of electronic systems and apply it in the context of reliability optimization. We then proceed to develop techniques that address uncertainty. The first technique is designed to quantify the variability of process parameters, which is induced by process variation, across silicon wafers based on indirect and potentially incomplete and noisy measurements. The second technique is designed to study diverse system-level characteristics with respect to the variability originating from process variation. In particular, it allows for analyzing transient temperature profiles as well as dynamic steady-state temperature profiles of electronic systems. This is illustrated by considering a problem of design-space exploration with probabilistic constraints related to reliability. The third technique that we develop is designed to efficiently tackle the case of sources of uncertainty that are less regular than process variation, such as workload variation. This technique is exemplified by analyzing the effect that workload units with uncertain processing times have on the timing-, power-, and temperature-related characteristics of the system under consideration. We also address the issue of runtime management of electronic systems that are subject to uncertainty. In this context, we perform an early investigation of the utility of advanced prediction techniques for the purpose of finegrained long-range forecasting of resource usage in large computer systems. All the proposed techniques are assessed by extensive experimental evaluations, which demonstrate the superior performance of our approaches to analysis and design of electronic systems compared to existing techniques.

Book System Level Design of GPU Based Embedded Systems

Download or read book System Level Design of GPU Based Embedded Systems written by Arian Maghazeh and published by Linköping University Electronic Press. This book was released on 2018-12-07 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern embedded systems deploy several hardware accelerators, in a heterogeneous manner, to deliver high-performance computing. Among such devices, graphics processing units (GPUs) have earned a prominent position by virtue of their immense computing power. However, a system design that relies on sheer throughput of GPUs is often incapable of satisfying the strict power- and time-related constraints faced by the embedded systems. This thesis presents several system-level software techniques to optimize the design of GPU-based embedded systems under various graphics and non-graphics applications. As compared to the conventional application-level optimizations, the system-wide view of our proposed techniques brings about several advantages: First, it allows for fully incorporating the limitations and requirements of the various system parts in the design process. Second, it can unveil optimization opportunities through exposing the information flow between the processing components. Third, the techniques are generally applicable to a wide range of applications with similar characteristics. In addition, multiple system-level techniques can be combined together or with application-level techniques to further improve the performance. We begin by studying some of the unique attributes of GPU-based embedded systems and discussing several factors that distinguish the design of these systems from that of the conventional high-end GPU-based systems. We then proceed to develop two techniques that address an important challenge in the design of GPU-based embedded systems from different perspectives. The challenge arises from the fact that GPUs require a large amount of workload to be present at runtime in order to deliver a high throughput. However, for some embedded applications, collecting large batches of input data requires an unacceptable waiting time, prompting a trade-off between throughput and latency. We also develop an optimization technique for GPU-based applications to address the memory bottleneck issue by utilizing the GPU L2 cache to shorten data access time. Moreover, in the area of graphics applications, and in particular with a focus on mobile games, we propose a power management scheme to reduce the GPU power consumption by dynamically adjusting the display resolution, while considering the user's visual perception at various resolutions. We also discuss the collective impact of the proposed techniques in tackling the design challenges of emerging complex systems. The proposed techniques are assessed by real-life experimentations on GPU-based hardware platforms, which demonstrate the superior performance of our approaches as compared to the state-of-the-art techniques.

Book Designing for Resilience

Download or read book Designing for Resilience written by Vanessa Rodrigues and published by Linköping University Electronic Press. This book was released on 2020-05-05 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Services are prone to change in the form of expected and unexpected variations and disruptions, more so given the increasing interconnectedness and complexity of service systems today. These changes require service systems to be resilient and designed to adapt, to ensure that services continue to work smoothly. This thesis problematises the prevailing view and assumptions underpinning the current understanding of resilience in services. Drawing on literature from service management, service design, systems thinking and social-ecological resilience theory, this work investigates how service design can foster resilience in service systems. Supported by empirical input from three research projects in healthcare, the findings show service design can contribute to the adaptability and transformability of service systems through its holistic, human-centred, participatory and experimental approaches. Through the analysis, this research identifies key intervention points for cultivating service systems resilience through service design, including the design of service interactions, processes, enabling structures and multi-level governance. The study makes two important contributions. First, it extends the understanding of service systems resilience as the collective capacity for intentional action in responding to ongoing change, coordinated across scales in order to create value. This is supported by offering alternative assumptions about resilience in service. Second, it positions service design as an enabler of service resilience by explicitly linking design practice(s) to processes that contribute to resilience. By extending the understanding of service systems resilience, this thesis lays the groundwork for future research at the intersection of service design, systemic change and resilience.

Book Content Ontology Design Patterns  Qualities  Methods  and Tools

Download or read book Content Ontology Design Patterns Qualities Methods and Tools written by Karl Hammar and published by Linköping University Electronic Press. This book was released on 2017-09-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ontologies are formal knowledge models that describe concepts and relationships and enable data integration, information search, and reasoning. Ontology Design Patterns (ODPs) are reusable solutions intended to simplify ontology development and support the use of semantic technologies by ontology engineers. ODPs document and package good modelling practices for reuse, ideally enabling inexperienced ontologists to construct high-quality ontologies. Although ODPs are already used for development, there are still remaining challenges that have not been addressed in the literature. These research gaps include a lack of knowledge about (1) which ODP features are important for ontology engineering, (2) less experienced developers' preferences and barriers for employing ODP tooling, and (3) the suitability of the eXtreme Design (XD) ODP usage methodology in non-academic contexts. This dissertation aims to close these gaps by combining quantitative and qualitative methods, primarily based on five ontology engineering projects involving inexperienced ontologists. A series of ontology engineering workshops and surveys provided data about developer preferences regarding ODP features, ODP usage methodology, and ODP tooling needs. Other data sources are ontologies and ODPs published on the web, which have been studied in detail. To evaluate tooling improvements, experimental approaches provide data from comparison of new tools and techniques against established alternatives. The analysis of the gathered data resulted in a set of measurable quality indicators that cover aspects of ODP documentation, formal representation or axiomatisation, and usage by ontologists. These indicators highlight quality trade-offs: for instance, between ODP Learnability and Reusability, or between Functional Suitability and Performance Efficiency. Furthermore, the results demonstrate a need for ODP tools that support three novel property specialisation strategies, and highlight the preference of inexperienced developers for template-based ODP instantiation---neither of which are supported in prior tooling. The studies also resulted in improvements to ODP search engines based on ODP-specific attributes. Finally, the analysis shows that XD should include guidance for the developer roles and responsibilities in ontology engineering projects, suggestions on how to reuse existing ontology resources, and approaches for adapting XD to project-specific contexts.

Book Machine Learning Based Bug Handling in Large Scale Software Development

Download or read book Machine Learning Based Bug Handling in Large Scale Software Development written by Leif Jonsson and published by Linköping University Electronic Press. This book was released on 2018-05-17 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the possibilities of automating parts of the bug handling process in large-scale software development organizations. The bug handling process is a large part of the mostly manual, and very costly, maintenance of software systems. Automating parts of this time consuming and very laborious process could save large amounts of time and effort wasted on dealing with bug reports. In this thesis we focus on two aspects of the bug handling process, bug assignment and fault localization. Bug assignment is the process of assigning a newly registered bug report to a design team or developer. Fault localization is the process of finding where in a software architecture the fault causing the bug report should be solved. The main reason these tasks are not automated is that they are considered hard to automate, requiring human expertise and creativity. This thesis examines the possi- bility of using machine learning techniques for automating at least parts of these processes. We call these automated techniques Automated Bug Assignment (ABA) and Automatic Fault Localization (AFL), respectively. We treat both of these problems as classification problems. In ABA, the classes are the design teams in the development organization. In AFL, the classes consist of the software components in the software architecture. We focus on a high level fault localization that it is suitable to integrate into the initial support flow of large software development organizations. The thesis consists of six papers that investigate different aspects of the AFL and ABA problems. The first two papers are empirical and exploratory in nature, examining the ABA problem using existing machine learning techniques but introducing ensembles into the ABA context. In the first paper we show that, like in many other contexts, ensembles such as the stacked generalizer (or stacking) improves classification accuracy compared to individual classifiers when evaluated using cross fold validation. The second paper thor- oughly explore many aspects such as training set size, age of bug reports and different types of evaluation of the ABA problem in the context of stacking. The second paper also expands upon the first paper in that the number of industry bug reports, roughly 50,000, from two large-scale industry software development contexts. It is still as far as we are aware, the largest study on real industry data on this topic to this date. The third and sixth papers, are theoretical, improving inference in a now classic machine learning tech- nique for topic modeling called Latent Dirichlet Allocation (LDA). We show that, unlike the currently dominating approximate approaches, we can do parallel inference in the LDA model with a mathematically correct algorithm, without sacrificing efficiency or speed. The approaches are evaluated on standard research datasets, measuring various aspects such as sampling efficiency and execution time. Paper four, also theoretical, then builds upon the LDA model and introduces a novel supervised Bayesian classification model that we call DOLDA. The DOLDA model deals with both textual content and, structured numeric, and nominal inputs in the same model. The approach is evaluated on a new data set extracted from IMDb which have the structure of containing both nominal and textual data. The model is evaluated using two approaches. First, by accuracy, using cross fold validation. Second, by comparing the simplicity of the final model with that of other approaches. In paper five we empirically study the performance, in terms of prediction accuracy, of the DOLDA model applied to the AFL problem. The DOLDA model was designed with the AFL problem in mind, since it has the exact structure of a mix of nominal and numeric inputs in combination with unstructured text. We show that our DOLDA model exhibits many nice properties, among others, interpretability, that the research community has iden- tified as missing in current models for AFL.

Book Embedded Control System Design

Download or read book Embedded Control System Design written by Alexandru Forrai and published by Springer Science & Business Media. This book was released on 2012-07-27 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control system design is a challenging task for practicing engineers. It requires knowledge of different engineering fields, a good understanding of technical specifications and good communication skills. The current book introduces the reader into practical control system design, bridging the gap between theory and practice. The control design techniques presented in the book are all model based., considering the needs and possibilities of practicing engineers. Classical control design techniques are reviewed and methods are presented how to verify the robustness of the design. It is how the designed control algorithm can be implemented in real-time and tested, fulfilling different safety requirements. Good design practices and the systematic software development process are emphasized in the book according to the generic standard IEC61508. The book is mainly addressed to practicing control and embedded software engineers - working in research and development – as well as graduate students who are faced with the challenge to design control systems and implement them in real-time.

Book Distributed Embedded Control Systems

Download or read book Distributed Embedded Control Systems written by Matjaž Colnaric and published by Springer Science & Business Media. This book was released on 2007-11-21 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fascinating new work comes complete with more than 100 illustrations and a detailed practical prototype. It explores the domains encountered when designing a distributed embedded computer control system as an integrated whole. Basic issues about real-time systems and their properties, especially safety, are examined first. Then, system and hardware architectures are dealt with, along with programming issues, embodying desired properties, basic language subsets, object orientation and language support for hardware and software specifications.

Book Parameterized Verification of Synchronized Concurrent Programs

Download or read book Parameterized Verification of Synchronized Concurrent Programs written by Zeinab Ganjei and published by Linköping University Electronic Press. This book was released on 2021-03-19 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is currently an increasing demand for concurrent programs. Checking the correctness of concurrent programs is a complex task due to the interleavings of processes. Sometimes, violation of the correctness properties in such systems causes human or resource losses; therefore, it is crucial to check the correctness of such systems. Two main approaches to software analysis are testing and formal verification. Testing can help discover many bugs at a low cost. However, it cannot prove the correctness of a program. Formal verification, on the other hand, is the approach for proving program correctness. Model checking is a formal verification technique that is suitable for concurrent programs. It aims to automatically establish the correctness (expressed in terms of temporal properties) of a program through an exhaustive search of the behavior of the system. Model checking was initially introduced for the purpose of verifying finite‐state concurrent programs, and extending it to infinite‐state systems is an active research area. In this thesis, we focus on the formal verification of parameterized systems. That is, systems in which the number of executing processes is not bounded a priori. We provide fully-automatic and parameterized model checking techniques for establishing the correctness of safety properties for certain classes of concurrent programs. We provide an open‐source prototype for every technique and present our experimental results on several benchmarks. First, we address the problem of automatically checking safety properties for bounded as well as parameterized phaser programs. Phaser programs are concurrent programs that make use of the complex synchronization construct of Habanero Java phasers. For the bounded case, we establish the decidability of checking the violation of program assertions and the undecidability of checking deadlock‐freedom. For the parameterized case, we study different formulations of the verification problem and propose an exact procedure that is guaranteed to terminate for some reachability problems even in the presence of unbounded phases and arbitrarily many spawned processes. Second, we propose an approach for automatic verification of parameterized concurrent programs in which shared variables are manipulated by atomic transitions to count and synchronize the spawned processes. For this purpose, we introduce counting predicates that related counters that refer to the number of processes satisfying some given properties to the variables that are directly manipulated by the concurrent processes. We then combine existing works on the counter, predicate, and constrained monotonic abstraction and build a nested counterexample‐based refinement scheme to establish correctness. Third, we introduce Lazy Constrained Monotonic Abstraction for more efficient exploration of well‐structured abstractions of infinite‐state non‐monotonic systems. We propose several heuristics and assess the efficiency of the proposed technique by extensive experiments using our open‐source prototype. Lastly, we propose a sound but (in general) incomplete procedure for automatic verification of safety properties for a class of fault‐tolerant distributed protocols described in the Heard‐Of (HO for short) model. The HO model is a popular model for describing distributed protocols. We propose a verification procedure that is guaranteed to terminate even for unbounded number of the processes that execute the distributed protocol.

Book Companion Robots for Older Adults

    Book Details:
  • Author : Sofia Thunberg
  • Publisher : Linköping University Electronic Press
  • Release : 2024-05-06
  • ISBN : 9180755747
  • Pages : 175 pages

Download or read book Companion Robots for Older Adults written by Sofia Thunberg and published by Linköping University Electronic Press. This book was released on 2024-05-06 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis explores, through a mixed-methods approach, what happens when companion robots are deployed in care homes for older adults by looking at different perspectives from key stakeholders. Nine studies are presented with decision makers in municipalities, care staff and older adults, as participants, and the studies have primarily been carried out in the field in care homes and activity centres, where both qualitative (e.g., observations and workshops) and quantitative data (surveys) have been collected. The thesis shows that companion robots seem to be here to stay and that they can contribute to a higher quality of life for some older adults. It further presents some challenges with a certain discrepancy between what decision makers want and what staff might be able to facilitate. For future research and use of companion robots, it is key to evaluate each robot model and potential use case separately and develop clear routines for how they should be used, and most importantly, let all stakeholders be part of the process. The knowledge contribution is the holistic view of how different actors affect each other when emerging robot technology is introduced in a care environment. Den här avhandlingen utforskar vad som händer när sällskapsrobotar införs på omsorgsboenden för äldre genom att titta på perspektiv från olika intressenter. Nio studier presenteras med kommunala beslutsfattare, vårdpersonal och äldre som deltagare. Studierna har i huvudsak genomförts i fält på särskilda boenden och aktivitetscenter där både kvalitativa- (exempelvis observationer och workshops) och kvantitativa data (enkäter) har samlats in. Avhandlingen visar att sällskapsrobotar verkar vara här för att stanna och att de kan bidra till en högre livskvalitet för vissa äldre. Den visar även på en del utmaningar med en viss diskrepans mellan vad beslutsfattare vill införa och vad personalen har möjlighet att utföra i sitt arbete. För framtida forskning och användning av sällskapsrobotar är det viktigt att utvärdera varje robotmodell och varje användningsområde var för sig och ta fram tydliga rutiner för hur de ska användas, och viktigast av allt, låta alla intressenter vara en del av processen. Kunskapsbidraget med avhandlingen är en helhetssyn på hur olika aktörer påverkar varandra när ny robotteknik introduceras i en vårdmiljö

Book Distributed Moving Base Driving Simulators

Download or read book Distributed Moving Base Driving Simulators written by Anders Andersson and published by Linköping University Electronic Press. This book was released on 2019-04-30 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of new functionality and smart systems for different types of vehicles is accelerating with the advent of new emerging technologies such as connected and autonomous vehicles. To ensure that these new systems and functions work as intended, flexible and credible evaluation tools are necessary. One example of this type of tool is a driving simulator, which can be used for testing new and existing vehicle concepts and driver support systems. When a driver in a driving simulator operates it in the same way as they would in actual traffic, you get a realistic evaluation of what you want to investigate. Two advantages of a driving simulator are (1.) that you can repeat the same situation several times over a short period of time, and (2.) you can study driver reactions during dangerous situations that could result in serious injuries if they occurred in the real world. An important component of a driving simulator is the vehicle model, i.e., the model that describes how the vehicle reacts to its surroundings and driver inputs. To increase the simulator realism or the computational performance, it is possible to divide the vehicle model into subsystems that run on different computers that are connected in a network. A subsystem can also be replaced with hardware using so-called hardware-in-the-loop simulation, and can then be connected to the rest of the vehicle model using a specified interface. The technique of dividing a model into smaller subsystems running on separate nodes that communicate through a network is called distributed simulation. This thesis investigates if and how a distributed simulator design might facilitate the maintenance and new development required for a driving simulator to be able to keep up with the increasing pace of vehicle development. For this purpose, three different distributed simulator solutions have been designed, built, and analyzed with the aim of constructing distributed simulators, including external hardware, where the simulation achieves the same degree of realism as with a traditional driving simulator. One of these simulator solutions has been used to create a parameterized powertrain model that can be configured to represent any of a number of different vehicles. Furthermore, the driver's driving task is combined with the powertrain model to monitor deviations. After the powertrain model was created, subsystems from a simulator solution and the powertrain model have been transferred to a Modelica environment. The goal is to create a framework for requirement testing that guarantees sufficient realism, also for a distributed driving simulation. The results show that the distributed simulators we have developed work well overall with satisfactory performance. It is important to manage the vehicle model and how it is connected to a distributed system. In the distributed driveline simulator setup, the network delays were so small that they could be ignored, i.e., they did not affect the driving experience. However, if one gradually increases the delays, a driver in the distributed simulator will change his/her behavior. The impact of communication latency on a distributed simulator also depends on the simulator application, where different usages of the simulator, i.e., different simulator studies, will have different demands. We believe that many simulator studies could be performed using a distributed setup. One issue is how modifications to the system affect the vehicle model and the desired behavior. This leads to the need for methodology for managing model requirements. In order to detect model deviations in the simulator environment, a monitoring aid has been implemented to help notify test managers when a model behaves strangely or is driven outside of its validated region. Since the availability of distributed laboratory equipment can be limited, the possibility of using Modelica (which is an equation-based and object-oriented programming language) for simulating subsystems is also examined. Implementation of the model in Modelica has also been extended with requirements management, and in this work a framework is proposed for automatically evaluating the model in a tool.

Book Robust Stream Reasoning Under Uncertainty

Download or read book Robust Stream Reasoning Under Uncertainty written by Daniel de Leng and published by Linköping University Electronic Press. This book was released on 2019-11-08 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vast amounts of data are continually being generated by a wide variety of data producers. This data ranges from quantitative sensor observations produced by robot systems to complex unstructured human-generated texts on social media. With data being so abundant, the ability to make sense of these streams of data through reasoning is of great importance. Reasoning over streams is particularly relevant for autonomous robotic systems that operate in physical environments. They commonly observe this environment through incremental observations, gradually refining information about their surroundings. This makes robust management of streaming data and their refinement an important problem. Many contemporary approaches to stream reasoning focus on the issue of querying data streams in order to generate higher-level information by relying on well-known database approaches. Other approaches apply logic-based reasoning techniques, which rarely consider the provenance of their symbolic interpretations. In this work, we integrate techniques for logic-based stream reasoning with the adaptive generation of the state streams needed to do the reasoning over. This combination deals with both the challenge of reasoning over uncertain streaming data and the problem of robustly managing streaming data and their refinement. The main contributions of this work are (1) a logic-based temporal reasoning technique based on path checking under uncertainty that combines temporal reasoning with qualitative spatial reasoning; (2) an adaptive reconfiguration procedure for generating and maintaining a data stream required to perform spatio-temporal stream reasoning over; and (3) integration of these two techniques into a stream reasoning framework. The proposed spatio-temporal stream reasoning technique is able to reason with intertemporal spatial relations by leveraging landmarks. Adaptive state stream generation allows the framework to adapt to situations in which the set of available streaming resources changes. Management of streaming resources is formalised in the DyKnow model, which introduces a configuration life-cycle to adaptively generate state streams. The DyKnow-ROS stream reasoning framework is a concrete realisation of this model that extends the Robot Operating System (ROS). DyKnow-ROS has been deployed on the SoftBank Robotics NAO platform to demonstrate the system's capabilities in a case study on run-time adaptive reconfiguration. The results show that the proposed system - by combining reasoning over and reasoning about streams - can robustly perform stream reasoning, even when the availability of streaming resources changes.