Download or read book Understanding Jitter and Phase Noise written by Nicola Da Dalt and published by Cambridge University Press. This book was released on 2018-02-22 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain an intuitive understanding of jitter and phase noise with this authoritative guide. Leading researchers provide expert insights on a wide range of topics, from general theory and the effects of jitter on circuits and systems, to key statistical properties and numerical techniques. Using the tools provided in this book, you will learn how and when jitter and phase noise occur, their relationship with one another, how they can degrade circuit performance, and how to mitigate their effects - all in the context of the most recent research in the field. Examine the impact of jitter in key application areas, including digital circuits and systems, data converters, wirelines, and wireless systems, and learn how to simulate it using the accompanying Matlab code. Supported by additional examples and exercises online, this is a one-stop guide for graduate students and practicing engineers interested in improving the performance of modern electronic circuits and systems.
Download or read book Analysis and Design of CMOS Clocking Circuits For Low Phase Noise written by Woorham Bae and published by Institution of Engineering and Technology. This book was released on 2020-06-24 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: As electronics continue to become faster, smaller and more efficient, development and research around clocking signals and circuits has accelerated to keep pace. This book bridges the gap between the classical theory of clocking circuits and recent technological advances, making it a useful guide for newcomers to the field, and offering an opportunity for established researchers to broaden and update their knowledge of current trends.
Download or read book Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems written by Alper Demir and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS • Mathematical representations or models for the noise sources. • Mathematical model or representation for the system that is under the in fluence of the noise sources.
Download or read book Phase Noise in Signal Sources written by W. P. Robins and published by IET. This book was released on 1984 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a thorough treatment of phase noise, its relationship to thermal noise and associated subjects such as frequency stability. The design of low phase noise signal sources, including oscillators and synthesisers, is explained and in many cases the measured phase noise characteristics are compared with the theoretical predictions. Full theoretical treatments are combined with physical explanations, helpful comments, examples of manufactured equipment and practical tips. Overall system performance degradations due to unwanted phase noise are fully analysed for radar systems and for both analogue and digital communications systems. Specifications for the acceptable phase noise performance of signal sources to be used in such systems are derived after allowing for both technical and economic optimisation. The mature engineer whose mathematics may be somewhat rusty will find that every effort has been made to use the lowest level of mathematical sophistication that is compatible with a full analysis and every line of each mathematical argument has been set out so that the book may be read and understood even in an armchair. Due to a novel approach to the analytical treatment of narrow band noise, the book is simple to understand while simultaneously carrying the analysis further in several areas than any existing publication.
Download or read book Jitter Noise and Signal Integrity at High Speed written by Mike Peng Li and published by Pearson Education. This book was released on 2007-11-19 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art JNB and SI Problem-Solving: Theory, Analysis, Methods, and Applications Jitter, noise, and bit error (JNB) and signal integrity (SI) have become today‘s greatest challenges in high-speed digital design. Now, there’s a comprehensive and up-to-date guide to overcoming these challenges, direct from Dr. Mike Peng Li, cochair of the PCI Express jitter standard committee. One of the field’s most respected experts, Li has brought together the latest theory, analysis, methods, and practical applications, demonstrating how to solve difficult JNB and SI problems in both link components and complete systems. Li introduces the fundamental terminology, definitions, and concepts associated with JNB and SI, as well as their sources and root causes. He guides readers from basic math, statistics, circuit and system models all the way through final applications. Emphasizing clock and serial data communications applications, he covers JNB and SI simulation, modeling, diagnostics, debugging, compliance testing, and much more.
Download or read book Proceedings of the Custom Integrated Circuits Conference written by and published by . This book was released on 1989 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Design of High Performance CMOS Voltage Controlled Oscillators written by Liang Dai and published by Springer Science & Business Media. This book was released on 2003 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.
Download or read book High Speed Signaling written by Kyung Suk (Dan) Oh and published by Prentice Hall. This book was released on 2011-10-07 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: New System-Level Techniques for Optimizing Signal/Power Integrity in High-Speed Interfaces--from Pioneering Innovators at Rambus, Stanford, Berkeley, and MIT As data communication rates accelerate well into the multi-gigahertz range, ensuring signal integrity both on- and off-chip has become crucial. Signal integrity can no longer be addressed solely through improvements in package or board-level design: Diverse engineering teams must work together closely from the earliest design stages to identify the best system-level solutions. In High-Speed Signaling, several of the field’s most respected practitioners and researchers introduce cutting-edge modeling, simulation, and optimization techniques for meeting this challenge. Edited by pioneering experts Drs. Dan Oh and Chuck Yuan, these contributors explain why noise and jitter are no longer separable, demonstrate how to model their increasingly complex interactions, and thoroughly introduce a new simulation methodology for predicting link-level performance with unprecedented accuracy. The authors address signal integrity from architecture through high-volume production, thoroughly discussing design, implementation, and verification. Coverage includes New advances in passive-channel modeling, power-supply noise and jitter modeling, and system margin prediction Methodologies for balancing system voltage and timing budgets to improve system robustness in high-volume manufacturing Practical, stable formulae for converting key network parameters Improved solutions for difficult problems in the broadband modeling of interconnects Equalization techniques for optimizing channel performance Important new insights into the relationships between jitter and clocking topologies New on-chip measurement techniques for in-situ link performance testing Trends and future directions in signal integrity engineering High-Speed Signaling thoroughly introduces new techniques pioneered at Rambus and other leading high-tech companies and universities: approaches that have never before been presented with this much practical detail. It will be invaluable to everyone concerned with signal integrity, including signal and power integrity engineers, high-speed I/O circuit designers, and system-level board design engineers.
Download or read book The Designer s Guide to High Purity Oscillators written by Emad Eldin Hegazi and published by Springer Science & Business Media. This book was released on 2006-07-18 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.
Download or read book Pll Performance Simulation and Design written by Dean Banerjee and published by Dog Ear Publishing. This book was released on 2006-08 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for the reader who wishes to gain a solid understanding of Phase Locked Loop architectures and their applications. It provides a unique balance between both theoretical perspectives and practical design trade-offs. Engineers faced with real world design problems will find this book to be a valuable reference providing example implementations, the underlying equations that describe synthesizer behavior, and measured results that will improve confidence that the equations are a reliable predictor of system behavior. New material in the Fourth Edition includes partially integrated loop filter implementations, voltage controlled oscillators, and modulation using the PLL.
Download or read book The Design of Low Noise Oscillators written by Ali Hajimiri and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.
Download or read book Monolithic Phase Locked Loops and Clock Recovery Circuits written by Behzad Razavi and published by John Wiley & Sons. This book was released on 1996-04-18 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.
Download or read book IEEE Transactions on Circuits and Systems written by and published by . This book was released on 2006 with total page 1536 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Microwave and Wireless Synthesizers written by Ulrich L. Rohde and published by John Wiley & Sons. This book was released on 2021-04-27 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students.
Download or read book The Design of Modern Microwave Oscillators for Wireless Applications written by Ulrich L. Rohde and published by John Wiley & Sons. This book was released on 2005-05-27 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delivering the best possible solution for phase noise and outputpower efficiency in oscillators This complete and thorough analysis of microwave oscillatorsinvestigates all aspects of design, with particular emphasis onoperating conditions, choice of resonators and transistors, phasenoise, and output power. It covers both bipolar transistors andFETs. Following the authors' guidance, readers learn how to designmicrowave oscillators and VCOs that can be tuned over a very widefrequency range, yet have good phase noise, are low cost, and aresmall in size. All the essential topics in oscillator design anddevelopment are covered, including: * Device and resonator technology * Study of noise sources * Analysis methods * Design, calculation, and optimization methodologies * Practical design of single and coupled oscillators While most of the current literature in the field concentrates onclassic design strategies based on measurements, simulation, andoptimization of output power and phase noise, this text offers aunique approach that focuses on the complete understanding of thedesign process. The material demonstrates important design rulesstarting with the selection of best oscillator topology, choice oftransistors, and complete phase noise analysis that leads tooptimum performance of all relevant oscillator features. Alsoincluded are CMOS oscillators, which recently have become importantin cellular applications. For readers interested in specializedapplications and topics, a full chapter provides all the necessaryreferences. The contents of the text fall into two major categories: * Chapters 1 through 9 deal with a very detailed and expandedsingle resonator oscillator, including a thorough treatment of bothnonlinear analysis and phase noise * Chapters 10 and 11 use the knowledge obtained and apply it tomultiple coupled oscillators (synchronized oscillators) This text is partially based on research sponsored by the DefenseAdvanced Research Projects Agency (DARPA) and the United StatesArmy and conducted by Synergy Microwave Corporation. With thewealth of information provided for the analysis and practicaldesign of single and synchronized low-noise microwave oscillators,it is recommended reading for all RF microwave engineers. Inaddition, the text's comprehensive, step-by-step approach makes itan excellent graduate-level textbook.
Download or read book RF Analog Impairments Modeling for Communication Systems Simulation written by Lydi Smaini and published by John Wiley & Sons. This book was released on 2012-09-04 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the growing complexity of personal mobile communication systems demanding higher data-rates and high levels of integration using low-cost CMOS technology, overall system performance has become more sensitive to RF analog front-end impairments. Designing integrated transceivers requires a thorough understanding of the whole transceiver chain including RF analog front-end and digital baseband. Communication system engineers have to include RF analog imperfections in their simulation benches in order to study and quantify their impact on the system performance. Here the author explores key RF analog impairments in a transceiver and demonstrates how to model their impact from a communication system design view-point. He discusses the design aspects of the front end of transceivers (both receivers and transmitters) and provides the reader with a way to optimize a complex mixed-signal platform by taking into account the characteristics of the RF/analog front-end. Key features of this book include: Practical examples illustrated by system simulation results based on WiFi and mobile WiMAX OFDM transceivers An overview of the digital estimation and compensation of the RF analog impairments such as power amplifier distortion, quadrature imbalance, and carrier and sampling frequency offsets An exposition of the challenges involved in the design of both RF analog circuits and DSP communication circuits in deep submicron CMOS technology MATLAB® codes for RF analog impairments models hosted on the companion website Uniquely the book bridges the gap between RFIC design specification needs and communication systems simulation, offering readers RF analog impairments modeling knowledge and a comprehensive approach to unifying theory and practice in system modelling. It is of great value to communication systems and DSP engineers and graduate students who design communication processing engines, RF/analog systems and IC design engineers involved in the design of communication platforms.
Download or read book Bistatic SAR System and Signal Processing Technology written by Robert Wang and published by Springer. This book was released on 2017-12-26 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports the latest results in the study of Bistatic/Multistatic SAR system and signal processing techniques. Novel research ideas and experimental verification have been collected on all kinds of configurations of Bistatic/Multistatic SAR system, including the preliminary construction of system model, imaging algorithm design, mission design and the corresponding application representations etc. Handy well-prepared tables are provided for readers’ quick-reference, and the practical design of an interferometric SAR system is illustrated step by step. The book will be of interest to university researchers, R&D engineers and graduate students in Remote Sensing who wish to learn the core principles, methods, algorithms, and applications of Bistatic/Multistatic SAR system.