EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modeling and Control of Capacitive Single  and Dual axis MEMS Frame Gyroscopes

Download or read book Modeling and Control of Capacitive Single and Dual axis MEMS Frame Gyroscopes written by Florian Mair and published by . This book was released on 2013 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling and simulation of the capacitive accelerometer

Download or read book Modeling and simulation of the capacitive accelerometer written by Tan Tran Duc and published by GRIN Verlag. This book was released on 2009-01-19 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diploma Thesis from the year 2005 in the subject Electrotechnology, grade: Master 9.8/10, , language: English, abstract: Microelectromechanical systems (MEMS) are collection of microsensors and actuators that have the ability to sense its environment and react to changes in that environment with the use of a microcircuit control. They also include the conventional microelectronics packaging, integrating antenna structures for command signals into microelectromechanical structures for desired sensing and actuating functions. The system may also need micropower supply, microrelay, and microsignal processing units. Microcomponents make the system faster, more reliable, cheaper, and capable of incorporating more complex functions. In the beginning of 1990s, MEMS appeared with the aid of the development of integrated circuit fabrication processes, in which sensors, actuators, and control functions are co-fabricated in silicon [1]. Since then, remarkable research progresses have been achieved in MEMS under the strong promotions from both government and industries. In addition to the commercialization of some less integrated MEMS devices, such as microaccelerometers, inkjet printer head, micromirrors for projection, etc., the concepts and feasibility of more complex MEMS devices have been proposed and demonstrated for the applications in such varied fields as microfluidics, aerospace, biomedical, chemical analysis, wireless communications, data storage, display, optics, etc. Some branches of MEMS, appearing as microoptoelectromechanical systems (MOEMS), micro total analysis systems, etc., have attracted a great research since their potential applications’ market.

Book Dual Mass Linear Vibration Silicon Based MEMS Gyroscope

Download or read book Dual Mass Linear Vibration Silicon Based MEMS Gyroscope written by Huiliang Cao and published by Springer Nature. This book was released on 2023-04-17 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the key technologies in the manufacture of double-mass line vibrating silicon micromechanical gyroscope, respectively. The design of gyrostructure, detection technology, orthogonal correction technology, the influence of temperature and the design of measurement and control system framework are introduced in detail, with illustrations for easy understanding. It presents the principle, structure and related technology of silicon-based MEMS gyroscope. The content enlightens the researchers of silicon-based MEMS gyroscopes and gives readers a new understanding of the structural design of silicon-based gyroscopes and the design of dual-mass gyroscopes.

Book MEMS Accelerometers

Download or read book MEMS Accelerometers written by Mahmoud Rasras and published by MDPI. This book was released on 2019-05-27 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.

Book Resonant MEMS

Download or read book Resonant MEMS written by Oliver Brand and published by John Wiley & Sons. This book was released on 2015-04-22 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.

Book To Study the Modeling  Analysis and Design of MEMS Gyroscope

Download or read book To Study the Modeling Analysis and Design of MEMS Gyroscope written by Amandeep Sharma and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a study of various MEMS Gyroscopes available in the world, their working principles/phenomenon and respective applications.It covers the various processes involved in the fabrication of MEMS gyroscopes.The book will help as a tutorial to model, simulate and thus analyse a MEMS Gyroscope using Coventorware 2010 MEMS+2(MEMS design tool). It will also elaborate the actual working principle of MEMS Gyroscopes used in the sensors, gadgets and instruments with intrinsic propertie

Book Mems Accelerometer Modelling and Noise Analysis

Download or read book Mems Accelerometer Modelling and Noise Analysis written by Biter Boga Inaltekin and published by LAP Lambert Academic Publishing. This book was released on 2011-09 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro Electro Mechanical Systems (MEMS) have an extensive use in different areas of technology. Inertial sensors (accelerometers and gyroscopes) are one of the most widely used devices fabricated using MEMS technology. MEMS accelerometers play an important role in different application areas such as automotive, inertial navigation, guidance, industry, space applications etc. because of low cost, small size, low power, and high reliability. This book presents a detailed SIMULINK model for a conventional capacitive sigma-delta accelerometer system consisting of a MEMS accelerometer, closed-loop readout electronics, and signal processing units (e.g. decimation filters). By using this model, it is possible to estimate the performance of the full accelerometer system including individual noise components, operation range, open loop sensitivity, scale factor, etc. The developed model has been verified through test results using a capacitive MEMS accelerometer, full-custom designed readout electronics, and signal processing unit implemented on a FPGA.

Book Feedback Control of MEMS to Atoms

Download or read book Feedback Control of MEMS to Atoms written by Jason J. Gorman and published by Springer Science & Business Media. This book was released on 2011-12-16 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control from MEMS to Atoms illustrates the use of control and control systems as an essential part of functioning integrated systems. The book is organized according to the dimensional scale of the problem, starting with micro-scale systems and ending with atomic-scale systems. Similar to macro-scale machines and processes, control systems can play a major role in improving the performance of micro- and nano-scale systems and in enabling new capabilities that would otherwise not be possible. However, the majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry.

Book Electromechanics and MEMS

Download or read book Electromechanics and MEMS written by Thomas B. Jones and published by Cambridge University Press. This book was released on 2013-05-02 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive MEMS textbook, with worked examples and numerous homework problems.

Book Development of a Closed loop MEMS Capacitive Force Sensor

Download or read book Development of a Closed loop MEMS Capacitive Force Sensor written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes a closed-loop microelectromechanical system (MEMS) based on lumped-parameter modeling. Analytical models are derived for electrostatic comb drive actuator (CDA) under force-controlled actuation, electrothermal actuator (ETA) under displacement-controlled actuation, capacitive position sensor, including parallel plate capacitive sensor (PPCS) and torsional plate capacitive sensor (TPCS), mechanical equation of motion of a suspended shuttle, viscous air damping, folded exure. These models are implemented and simulated in finite element analysis softwares (ANSYS and FEMM). System level simulation, implementing PID difierential feedback loop, is simulated in a numerical simulation program (MATLAB). The MEMS die is fabricated by following the standard PolyMUMPs process by MEMSCAP. A series of MEMS packaging process and storage are done in the lab. All peripheral circuitries are self-made. A commercial capacitive readout IC (MS3110) is first used for open-loop capacitive sensing, which achieves the resolution of 0.05fF, equivalent to 1nm in displacement. Due to the disadvantage of MS3110 in closed-loop, AC bridge capacitance measurement method is then implemented for closed-loop integration. The resolution of AC bridge sensor reaches 0.02fF, equivalent to 0.4nm in displacement. An additional function of AC bridge sensing is accomplished which is simultaneously sensing and actuation of CDA. In the feedback loop, the traditional analog PID controller is designed to transfer the voltage signal of capacitance measurement to the voltage-force transducer which converts feedback voltages to differential feedback force. Since the differential feedback force is limited by clamped voltage, a force-balanced mode is observed under 5V actuation of CDA.

Book System level Modeling of MEMS

Download or read book System level Modeling of MEMS written by Oliver Brand and published by John Wiley & Sons. This book was released on 2012-12-20 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.

Book Modeling And Feedback Control Of Mems Devices

Download or read book Modeling And Feedback Control Of Mems Devices written by Bruno Borovic and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-electromechanical systems (MEMS) are micromachines that allow computation, sensing, mobility, and manipulation at small scales down to the size of microns. During the past decade, MEMS technology has allowed the development of many advanced devices that have found their way to the market. Ever increasing needs for MEMS are fueled by the exponential growth of markets such as cell phones, gaming, and communications and military applications. Both quality and price requirements put stringent specifications on the new MEMS devices. Feedback control techniques facilitate reliably meeting these specifications. This book provides the reader with control strategies and design techniques in a collection of practical examples, covering topics such as dynamical modeling of MEMS devices, dynamic control for performance improvement, and improved MEMS design based on control system analysis.

Book Modeling Analysis and Design of a Vibrating Ring MEMS Gyroscope

Download or read book Modeling Analysis and Design of a Vibrating Ring MEMS Gyroscope written by Erez Yotvat and published by . This book was released on 2011 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonlinear Maps and their Applications

Download or read book Nonlinear Maps and their Applications written by Ricardo López-Ruiz and published by Springer. This book was released on 2015-03-11 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2013) held in Zaragoza, Spain, on September 3-4, 2013. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.

Book Sensing and Control of MEMS Accelerometers Using Kalman Filter

Download or read book Sensing and Control of MEMS Accelerometers Using Kalman Filter written by Kai Zhang and published by . This book was released on 2010 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface micromachined low-capacitance MEMS capacitive accelerometers which integrated CMOS readout circuit generally have a noise above 0.02g. Force-to-rebalance feedback control that is commonly used in MEMS accelerometers can improve the performances of accelerometers such as increasing their stability, bandwidth and dynamic range. However, the controller also increases the noise floor. There are two major sources of the noise in MEMS accelerometer. They are electronic noise from the CMOS readout circuit and thermal-mechanical Brownian noise caused by damping. Kalman filter is an effective solution to the problem of reducing the effects of the noises through estimating and canceling the states contaminated by noise. The design and implementation of a Kalman filter for a MEMS capacitive accelerometer is presented in the thesis in order to filter out the noise mentioned above while keeping its good performance under feedback control. The dynamic modeling of the MEMS accelerometer system and the controller design based on the model are elaborated in the thesis. Simulation results show the Kalman filter gives an excellent noise reduction, increases the dynamic range of the accelerometer, and reduces the displacement of the mass under a closed-loop structure.

Book Design and Modeling of a MEMS based Accelerometer with Pull in Analysis

Download or read book Design and Modeling of a MEMS based Accelerometer with Pull in Analysis written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reports the design and modelling of a MEMS (Micro Electro Mechanical system) based inertial accelerometer. The main motivation to design a differential type of accelerometer is that such a kind of structure allows differential electrostatic actuation and capacitive sensing. They can be operated at the border of stability also so that the "pull in" operation mode can be explored. Such kinds of structures have a wide range of applications because of their high sensitivity. One is in the field of minimally invasive surgery where accelerometers will be combined with gyroscopes to be used in the navigation of surgical tools as a inertial micro unit (IMU). The choice for the design of a structure with 1 Degree ofFreedom(DOF), instead of a 2-DOF device was instigated by the simplicity of the design and by a more efficient 1-DOF dynamic model. The accelerometers were designed and optimized using the MATLAB simulator and COVENTORWARE simulation tool. First set of devices is fabricated using a commercial foundry process called SOIMUMPs. The simulation tests show that the SOl accelerometer system yields 8.8kHz resonant frequency, with a quality factor of 10 and 2.l2mV/g sensitivity. To characterize the accelerometer a new semi automatic tool was formulated for the noise analysis and noise based optimization of the accelerometer design and the analysis estimation shows that there is a trade off between the SIN ratio and the sensitivity and for the given design could be made much better in terms of SIN by tuning its resonant frequency.