EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis and Design of Discrete Linear Control Systems

Download or read book Analysis and Design of Discrete Linear Control Systems written by Vladimír Kučera and published by Academia. This book was released on 1991 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides advanced and detailed coverage of discrete-time or sampled-data linear control systems, presenting readers with a synthesis of state-space and transfer-function approaches to the design of state regulators and observers, dynamical output feedback and feedforward compensation.

Book Linear Control System Analysis and Design

Download or read book Linear Control System Analysis and Design written by Constantine H. Houpis and published by CRC Press. This book was released on 2003-08-14 with total page 859 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly classroom-tested and proven to be a valuable self-study companion, Linear Control System Analysis and Design: Fifth Edition uses in-depth explanations, diagrams, calculations, and tables, to provide an intensive overview of modern control theory and conventional control system design. The authors keep the mathematics to a minimum while stressing real-world engineering challenges. Completely updated and packed with student-friendly features, the Fifth Edition presents a wide range of examples using MATLAB® and TOTAL-PC, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Eighty percent of the problems presented in the previous edition have been revised to further reinforce concepts necessary for current electrical, aeronautical, astronautical, and mechanical applications.

Book Linear Feedback Control

Download or read book Linear Feedback Control written by Dingyu Xue and published by SIAM. This book was released on 2007-01-01 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.

Book Linear Control System Analysis and Design

Download or read book Linear Control System Analysis and Design written by John Joachim D'Azzo and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1995 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition emphasizes undergraduate topics and the use of CAD programs, while providing a rigorous treatment of advanced topics and derivation techniques. Organized logically and for maximum teaching flexibility, it instills the basic principles of feedback control essential to all specialty areas of engineering.

Book Digital Control Engineering

Download or read book Digital Control Engineering written by M. Sami Fadali and published by Academic Press. This book was released on 2012-08-21 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital controls in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer. Extensive Use of computational tools: Matlab sections at end of each chapter show how to implement concepts from the chapter Frees the student from the drudgery of mundane calculations and allows him to consider more subtle aspects of control system analysis and design An engineering approach to digital controls: emphasis throughout the book is on design of control systems. Mathematics is used to help explain concepts, but throughout the text discussion is tied to design and implementation. For example coverage of analog controls in chapter 5 is not simply a review, but is used to show how analog control systems map to digital control systems Review of Background Material: contains review material to aid understanding of digital control analysis and design. Examples include discussion of discrete-time systems in time domain and frequency domain (reviewed from linear systems course) and root locus design in s-domain and z-domain (reviewed from feedback control course) Inclusion of Advanced Topics In addition to the basic topics required for a one semester senior/graduate class, the text includes some advanced material to make it suitable for an introductory graduate level class or for two quarters at the senior/graduate level. Examples of optional topics are state-space methods, which may receive brief coverage in a one semester course, and nonlinear discrete-time systems Minimal Mathematics Prerequisites The mathematics background required for understanding most of the book is based on what can be reasonably expected from the average electrical, chemical or mechanical engineering senior. This background includes three semesters of calculus, differential equations and basic linear algebra. Some texts on digital control require more

Book Introduction to Discrete Linear Controls

Download or read book Introduction to Discrete Linear Controls written by Albert B. Bishop and published by Elsevier. This book was released on 2014-05-10 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Discrete Linear Controls: Theory and Applications focuses on the design, analysis, and operation of discrete-time decision processes. The publication first offers information on systems theory and discrete linear control systems, discrete control-system models, and the calculus of finite differences. Discussions focus on the calculus of finite differences and linear difference equations, summations, control of cylinder diameter, generalized discrete process controller with sampling, difference equations, control theory, and system models. The text then examines classical solution of linear difference equations with constant, inverse transformation, and measures and environmental effects of system performance. The manuscript takes a look at parameter selection in first-order systems considering sampling and instrumentation errors, second-order systems, and system instability, including responses of the generalized second-order process controller; criterion for stability of discrete linear systems; and proportional-plus-difference control. The publication is a valuable source of information for engineers, operations researchers, and systems analysts.

Book Introduction to Linear Control Systems

Download or read book Introduction to Linear Control Systems written by Yazdan Bavafa-Toosi and published by Academic Press. This book was released on 2017-09-19 with total page 1135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.

Book Analysis and Design of Descriptor Linear Systems

Download or read book Analysis and Design of Descriptor Linear Systems written by Guang-Ren Duan and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Descriptor linear systems theory is an important part in the general field of control systems theory, and has attracted much attention in the last two decades. In spite of the fact that descriptor linear systems theory has been a topic very rich in content, there have been only a few books on this topic. This book provides a systematic introduction to the theory of continuous-time descriptor linear systems and aims to provide a relatively systematic introduction to the basic results in descriptor linear systems theory. The clear representation of materials and a large number of examples make this book easy to understand by a large audience. General readers will find in this book a comprehensive introduction to the theory of descriptive linear systems. Researchers will find a comprehensive description of the most recent results in this theory and students will find a good introduction to some important problems in linear systems theory.

Book Linear Control System Analysis and Design

Download or read book Linear Control System Analysis and Design written by John Joachim D'Azzo and published by McGraw-Hill Companies. This book was released on 1988 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended to provide a clear, understandable, and motivated account of the subject which spans both conventional and modern control theory. The authors have tried to exert meticulous care with explanations, diagrams, calculations, tables, and symbols. They have tried to ensure that the student is made aware that rigor is necessary for advanced control work. Also stressed is the importance of clearly understanding the concepts which provide the rigorous foundations of modern control theory. The text provides a strong, comprehensive, and illuminating account of those elements of conventional control theory which have relevance in the design and analysis of control systems. The presentation of a variety of different techniques contributes to the development of the student's working understanding of what A.T. Fuller has called "the enigmatic control system." To provide a coherent development of the subject, an attempt is made to eschew formal proofs and lemmas with an organization that draws the perceptive student steadily and surely onto the demanding theory of multi-variable control systems. It is the opinion of the authors that a student who has reached this point is fully equipped to undertake with confidence the challenges presented by more advanced control theories as typified by chapters 18 through 22. The importance and necessity of making extensive use of computers is emphasized by references to comprehensive computer-aided-design (CAD) programs. - Preface.

Book Linear Discrete Time Systems

Download or read book Linear Discrete Time Systems written by Zoran M. Buchevats and published by CRC Press. This book was released on 2017-11-22 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers crucial lacunae of the linear discrete-time time-invariant dynamical systems and introduces the reader to their treatment, while functioning under real, natural conditions, in forced regimes with arbitrary initial conditions. It provides novel theoretical tools necessary for the analysis and design of the systems operating in stated conditions. The text completely covers two well-known systems, IO and ISO, along with a new system, IIO. It discovers the concept of the full transfer function matrix F(z) in the z-complex domain, which incorporates the Z-transform of the system, input and another variable, vectors, all with arbitrary initial conditions. Consequently, it addresses the full system matrix P(z) and the full block diagram technique based on the use of F(z), which incorporates the Z-transform of the system, input and another variable, vectors, all with arbitrary initial conditions. The book explores the direct relationship between the system full transfer function matrix F(z) and the Lyapunov stability concept, definitions, and conditions, as well as with the BI stability concept, definitions, and conditions. The goal of the book is to unify the study and applications of all three classes of the linear discrete-time time-invariant system, for short systems.

Book Linear Control Systems

Download or read book Linear Control Systems written by Branislav Kisacanin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anyone seeking a gentle introduction to the methods of modern control theory and engineering, written at the level of a first-year graduate course, should consider this book seriously. It contains: A generous historical overview of automatic control, from Ancient Greece to the 1970s, when this discipline matured into an essential field for electrical, mechanical, aerospace, chemical, and biomedical engineers, as well as mathematicians, and more recently, computer scientists; A balanced presentation of the relevant theory: the main state-space methods for description, analysis, and design of linear control systems are derived, without overwhelming theoretical arguments; Over 250 solved and exercise problems for both continuous- and discrete-time systems, often including MATLAB simulations; and Appendixes on MATLAB, advanced matrix theory, and the history of mathematical tools such as differential calculus, transform methods, and linear algebra. Another noteworthy feature is the frequent use of an inverted pendulum on a cart to illustrate the most important concepts of automatic control, such as: Linearization and discretization; Stability, controllability, and observability; State feedback, controller design, and optimal control; and Observer design, reduced order observers, and Kalman filtering. Most of the problems are given with solutions or MATLAB simulations. Whether the book is used as a textbook or as a self-study guide, the knowledge gained from it will be an excellent platform for students and practising engineers to explore further the recent developments and applications of control theory.

Book Numerical Methods for Linear Control Systems

Download or read book Numerical Methods for Linear Control Systems written by Biswa Datta and published by Academic Press. This book was released on 2004 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Linear Control Systems Design and Analysis is an interdisciplinary textbook aimed at systematic descriptions and implementations of numerically-viable algorithms based on well-established, efficient and stable modern numerical linear techniques for mathematical problems arising in the design and analysis of linear control systems both for the first- and second-order models. Unique coverage of modern mathematical concepts such as parallel computations, second-order systems, and large-scale solutions Background material in linear algebra, numerical linear algebra, and control theory included in text Step-by-step explanations of the algorithms and examples

Book Digital Control System Analysis and Design

Download or read book Digital Control System Analysis and Design written by Charles L. Phillips and published by . This book was released on 1990 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Discrete time Control Systems

Download or read book Discrete time Control Systems written by Katsuhiko Ogata and published by Prentice Hall. This book was released on 1987 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: A look at the analysis and design of discrete-time control systems which provides a gradual development of the theory by emphasizing basic concepts and avoiding highly mathematical arguments.

Book Design of Nonlinear Control Systems with the Highest Derivative in Feedback

Download or read book Design of Nonlinear Control Systems with the Highest Derivative in Feedback written by Valery D. Yurkevich and published by World Scientific. This book was released on 2004 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book presents an analytical uniform design methodology of continuous-time or discrete-time nonlinear control system design which guarantees desired transient performances in the presence of plant parameter variations and unknown external disturbances. All results are illustrated with numerical simulations, their practical importance is highlighted, and they may be used for real-time control system design in robotics, mechatronics, chemical reactors, electrical and electro-mechanical systems as well as aircraft control systems. The book is easy reading and is suitable for teaching.

Book Discrete data Control Systems

Download or read book Discrete data Control Systems written by Benjamin C. Kuo and published by . This book was released on 1974 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Control Systems

Download or read book Introduction to Control Systems written by Davinder K. Anand and published by Butterworth-Heinemann. This book was released on 1995 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the second edition of this classic text for students and engineers appeared in 1984, the use of computer-aided design software has become an important adjunct to the study of control system analysis and design. With this in mind the entire text has been recast, enlarged and updated. In addition the scope of the book has been extended so that it is suitable for students of mechanical and electrical engineering, as well as other students of control systems. Many of the classical analytical and graphical techniques have been retained because of their important conceptual role in understanding control system design, although the use of computer techniques in their application is encouraged and emphasized. The concept of a system S has been highlighted in the text, and various mathematical representations of it by the transfer function and State equation are carefully examined in early chapters. In discussing feedback control, the concept of robustness is introduced as a means of studying the effect of parameter variation upon system performance. Two new chapters on control strategies and plant sizing, and on adaptive control, have been added. The chapters on control system design, discrete time control, and non-linear control systems have been considerably expanded to cover such matters as pole-placement design using state space methods, digital compensators, and Popov stability methods of analysis. Dr D K Anand is both a Professor and Chairman of the Department of Mechanical Engineering at the University of Maryland, USA. Dr Anand has consulted widely in systems analysis for the US Government and for industry, and is a prominent author on control and engineering subjects. Dr R B Zmood is the Control Discipline Leader in the Department of Electrical Engineering at Royal Melbourne Institute of Technology, Australia. He has consulted widely both in Australia and in the USA on the industrial and military applications of control systems.