Download or read book Analysis and Computation of Microstructure in Finite Plasticity written by Sergio Conti and published by Springer. This book was released on 2015-04-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the need for a fundamental understanding of the physical origin, the mathematical behavior and the numerical treatment of models which include microstructure. Leading scientists present their efforts involving mathematical analysis, numerical analysis, computational mechanics, material modelling and experiment. The mathematical analyses are based on methods from the calculus of variations, while in the numerical implementation global optimization algorithms play a central role. The modeling covers all length scales, from the atomic structure up to macroscopic samples. The development of the models ware guided by experiments on single and polycrystals and results will be checked against experimental data.
Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Download or read book Computational Methods for Microstructure Property Relationships written by Somnath Ghosh and published by Springer Science & Business Media. This book was released on 2010-11-17 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Methods for Microstructure-Property Relationships introduces state-of-the-art advances in computational modeling approaches for materials structure-property relations. Written with an approach that recognizes the necessity of the engineering computational mechanics framework, this volume provides balanced treatment of heterogeneous materials structures within the microstructural and component scales. Encompassing both computational mechanics and computational materials science disciplines, this volume offers an analysis of the current techniques and selected topics important to industry researchers, such as deformation, creep and fatigue of primarily metallic materials. Researchers, engineers and professionals involved with predicting performance and failure of materials will find Computational Methods for Microstructure-Property Relationships a valuable reference.
Download or read book Plasticity and Beyond written by Jörg Schröder and published by Springer Science & Business Media. This book was released on 2013-09-20 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.
Download or read book Plasticity written by Ronaldo I. Borja and published by Springer Science & Business Media. This book was released on 2013-06-14 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.
Download or read book Introduction to Geometrically Nonlinear Continuum Dislocation Theory written by Christian B. Silbermann and published by Springer Nature. This book was released on 2021-03-02 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to geometrically non-linear single crystal plasticity with continuously distributed dislocations. A symbolic tensor notation is used to focus on the physics. The book also shows the implementation of the theory into the finite element method. Moreover, a simple simulation example demonstrates the capability of the theory to describe the emergence of planar lattice defects (subgrain boundaries) and introduces characteristics of pattern forming systems. Numerical challenges involved in the localization phenomena are discussed in detail.
Download or read book Computational Methods for Plasticity written by Eduardo A. de Souza Neto and published by John Wiley & Sons. This book was released on 2011-09-21 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic – i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book: Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume. Includes many numerical examples that illustrate the application of the methodologies described. Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics. Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book’s companion website. This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.
Download or read book IUTAM Symposium on Variational Concepts with Applications to the Mechanics of Materials written by Klaus Hackl and published by Springer Science & Business Media. This book was released on 2010-06-02 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational calculus has been the basis of a variety of powerful methods in the ?eld of mechanics of materials for a long time. Examples range from numerical schemes like the ?nite element method to the determination of effective material properties via homogenization and multiscale approaches. In recent years, however, a broad range of novel applications of variational concepts has been developed. This c- prises the modeling of the evolution of internal variables in inelastic materials as well as the initiation and development of material patterns and microstructures. The IUTAM Symposium on “Variational Concepts with Applications to the - chanics of Materials” took place at the Ruhr-University of Bochum, Germany, on September 22–26, 2008. The symposium was attended by 55 delegates from 10 countries. Altogether 31 lectures were presented. The objective of the symposium was to give an overview of the new dev- opments sketched above, to bring together leading experts in these ?elds, and to provide a forum for discussing recent advances and identifying open problems to work on in the future. The symposium focused on the developmentof new material models as well as the advancement of the corresponding computational techniques. Speci?c emphasis is put on the treatment of materials possessing an inherent - crostructure and thus exhibiting a behavior which fundamentally involves multiple scales. Among the topics addressed at the symposium were: 1. Energy-based modeling of material microstructures via envelopes of n- quasiconvex potentials and applications to plastic behavior and pha- transformations.
Download or read book Proceedings written by and published by . This book was released on 2009 with total page 1036 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Proceedings A publishes refereed research papers in the mathematical, physical, and engineering sciences. The emphasis is on new, emerging areas of interdisciplinary and multidisciplinary research." Continues: Proceedings. Mathematical and physical sciences.
Download or read book Micro and Macromechanical Properties of Materials written by Yichun Zhou and published by CRC Press. This book was released on 2013-09-26 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an English translation of a Chinese textbook that has been designated a national planned university textbook, the highest award given to scientific textbooks in China. The book provides a complete overview of mechanical properties and fracture mechanics in materials science, mechanics, and physics. It details the macro- and micro-mechanical properties of metal structural materials, nonmetal structural materials, and various functional materials. It also discusses the macro and micro failure mechanism under different loadings and contains research results on thin film mechanics, smart material mechanics, and more.
Download or read book Software for Exascale Computing SPPEXA 2013 2015 written by Hans-Joachim Bungartz and published by Springer. This book was released on 2016-09-14 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research and its outcomes presented in this collection focus on various aspects of high-performance computing (HPC) software and its development which is confronted with various challenges as today's supercomputer technology heads towards exascale computing. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The collection thereby highlights pioneering research findings as well as innovative concepts in exascale software development that have been conducted under the umbrella of the priority programme "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) and that have been presented at the SPPEXA Symposium, Jan 25-27 2016, in Munich. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.
Download or read book Integrated Computational Materials Engineering ICME for Metals written by Mark F. Horstemeyer and published by John Wiley & Sons. This book was released on 2012-07-23 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text delivers a comprehensive overview of the methods of Integrated Computational Materials Engineering (ICME), and provides clear examples to demonstrate the multiscale modeling methodology. It walks beginners through the various aspects of modeling and simulation related to materials processing.
Download or read book IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains written by Christian Miehe and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The steady increase in computational power induces an equally steady increase in the complexity of the engineering models and associated computer codes. This particularly affects the modeling of the mechanical response of materials. Material behavior is nowadays modeled in the strongly nonlinear range by tak ing into account finite strains, complex hysteresis effects, fracture phenomena and multiscale features. Progress in this field is of fundamental importance for many engineering disciplines, especially those concerned with material testing, safety, reliability and serviceability analyses of engineering structures. In recent years many important achievements have been made in the field of the theoretical formulation, the mathematical analysis and the numerical im plementation of deformation processes in solids. Computational methods and simulation techniques today play a central role in advancing the understanding of complex material behavior. Research in the field of "ComputationalMechan ics of Materials" is concerned with the development of mathematical models and numerical solution techniques for the simulation of material response. It is a very broad interdisciplinary field of science with inputs from traditional fields such as Applied Mechanics, Applied Mathematics, Materials Science, Solid State Physics and Information Technology. The intention of the IUTAM Symposium "Computational Mechanics of Solid Materials at Large Strains", held at the University of Stuttgart, Germany, from August 20-24, 200I, was to give a state of the art and a survey about recent developments in this field and to create perspectives for future research trends.
Download or read book Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro heterogeneous Materials written by Felix Fritzen and published by KIT Scientific Publishing. This book was released on 2014-08-22 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering materials show a pronounced heterogeneity on a smaller scale that influences the macroscopic constitutive behavior. Algorithms for the periodic discretization of microstructures are presented. These are used within the Nonuniform Transformation Field Analysis (NTFA) which is an order reduction based nonlinear homogenization method with micro-mechanical background. Theoretical and numerical aspects of the method are discussed and its computational efficiency is validated.
Download or read book Mechanics of Microstructured Materials written by Helmut J. Böhm and published by Springer. This book was released on 2014-05-04 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work deals with the thermomechanical mechanical behavior of microstructured materials, which has attracted considerable interest from both the academic and the industrial research communities. The past decade has witnessed major progress in the development of analytical as well as numerical modeling approaches and of experimental methods in this field. Considerable research efforts have been aimed at obtaining microstructure-property correlations and at studying the damage and failure behavior of microstructured materials. The book combines an overview of important analytical and numerical modeling approaches in continuum micromechanics and is aimed at academic and industrial researchers, such as materials scientists, mechanical engineers, and applied physicists, who are working or planning to work in the field of mechanics of microstructured materials such as composites, metals and ceramics.
Download or read book Multiscale Modeling in Solid Mechanics written by Ugo Galvanetto and published by Imperial College Press. This book was released on 2010 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.
Download or read book IUTAM Symposium on Theoretical Computational and Modelling Aspects of Inelastic Media written by B. Daya Reddy and published by Springer Science & Business Media. This book was released on 2008-09-24 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work comprises papers based on some of the talks presented at the IUTAM Symposium of the same name, held in Cape Town, January 14-18, 2008. This volume treats cutting-edge issues in modelling, the behaviour of various classes of inelastic media, and associated algorithms for carrying out computational simulations. A key feature of the contributions are works directed at modelling behaviour at the meso and micro-scales, and at bridging the micro-macro scales.