Download or read book Flexible Imputation of Missing Data Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.
Download or read book Data Analysis Using Regression and Multilevel Hierarchical Models written by Andrew Gelman and published by Cambridge University Press. This book was released on 2007 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Download or read book Hierarchical Linear Models written by Anthony S. Bryk and published by SAGE Publications, Incorporated. This book was released on 1992 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.
Download or read book Missing Data in Longitudinal Studies written by Michael J. Daniels and published by CRC Press. This book was released on 2008-03-11 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ
Download or read book Handbook of Missing Data Methodology written by Geert Molenberghs and published by CRC Press. This book was released on 2014-11-06 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
Download or read book Applied Bayesian Hierarchical Methods written by Peter D. Congdon and published by CRC Press. This book was released on 2010-05-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach
Download or read book Bayesian Hierarchical Models written by Peter D. Congdon and published by CRC Press. This book was released on 2019-09-16 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Download or read book Applied Missing Data Analysis written by Craig K. Enders and published by Guilford Publications. This book was released on 2022-08-31 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website includes datasets and analysis examples from the book, up-to-date software information, and other resources. Subject areas/Key words: advanced quantitative methods, management, survey, longitudinal, structural equation modeling, handling, how to handle, incomplete, multivariate, social research, behavioral sciences, statistical techniques, textbooks, seminars, doctoral courses, multiple imputation, models, MCAR, MNAR, Bayesian Audience: Researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science"--
Download or read book Biopharmaceutical Applied Statistics Symposium written by Karl E. Peace and published by Springer. This book was released on 2018-08-21 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This BASS book Series publishes selected high-quality papers reflecting recent advances in the design and biostatistical analysis of biopharmaceutical experiments – particularly biopharmaceutical clinical trials. The papers were selected from invited presentations at the Biopharmaceutical Applied Statistics Symposium (BASS), which was founded by the first Editor in 1994 and has since become the premier international conference in biopharmaceutical statistics. The primary aims of the BASS are: 1) to raise funding to support graduate students in biostatistics programs, and 2) to provide an opportunity for professionals engaged in pharmaceutical drug research and development to share insights into solving the problems they encounter. The BASS book series is initially divided into three volumes addressing: 1) Design of Clinical Trials; 2) Biostatistical Analysis of Clinical Trials; and 3) Pharmaceutical Applications. This book is the second of the 3-volume book series. The topics covered include: Statistical Approaches to the Meta-analysis of Randomized Clinical Trials, Collaborative Targeted Maximum Likelihood Estimation to Assess Causal Effects in Observational Studies, Generalized Tests in Clinical Trials, Discrete Time-to-event and Score-based Methods with Application to Composite Endpoint for Assessing Evidence of Disease Activity-Free , Imputing Missing Data Using a Surrogate Biomarker: Analyzing the Incidence of Endometrial Hyperplasia, Selected Statistical Issues in Patient-reported Outcomes, Network Meta-analysis, Detecting Safety Signals Among Adverse Events in Clinical Trials, Applied Meta-analysis Using R, Treatment of Missing Data in Comparative Effectiveness Research, Causal Estimands: A Common Language for Missing Data, Bayesian Subgroup Analysis with Examples, Statistical Methods in Diagnostic Devices, A Question-Based Approach to the Analysis of Safety Data, Analysis of Two-stage Adaptive Seamless Trial Design, and Multiplicity Problems in Clinical Trials – A Regulatory Perspective.
Download or read book Applied Bayesian Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2014-05-23 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.
Download or read book Hierarchical Linear Modeling written by G. David Garson and published by SAGE. This book was released on 2013 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
Download or read book Proceedings written by and published by . This book was released on 1995 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The SAGE Handbook of Quantitative Methodology for the Social Sciences written by David Kaplan and published by SAGE Publications. This book was released on 2004-06-21 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Click ′Additional Materials′ for downloadable samples "The 24 chapters in this Handbook span a wide range of topics, presenting the latest quantitative developments in scaling theory, measurement, categorical data analysis, multilevel models, latent variable models, and foundational issues. Each chapter reviews the historical context for the topic and then describes current work, including illustrative examples where appropriate. The level of presentation throughout the book is detailed enough to convey genuine understanding without overwhelming the reader with technical material. Ample references are given for readers who wish to pursue topics in more detail. The book will appeal to both researchers who wish to update their knowledge of specific quantitative methods, and students who wish to have an integrated survey of state-of- the-art quantitative methods." —Roger E. Millsap, Arizona State University "This handbook discusses important methodological tools and topics in quantitative methodology in easy to understand language. It is an exhaustive review of past and recent advances in each topic combined with a detailed discussion of examples and graphical illustrations. It will be an essential reference for social science researchers as an introduction to methods and quantitative concepts of great use." —Irini Moustaki, London School of Economics, U.K. "David Kaplan and SAGE Publications are to be congratulated on the development of a new handbook on quantitative methods for the social sciences. The Handbook is more than a set of methodologies, it is a journey. This methodological journey allows the reader to experience scaling, tests and measurement, and statistical methodologies applied to categorical, multilevel, and latent variables. The journey concludes with a number of philosophical issues of interest to researchers in the social sciences. The new Handbook is a must purchase." —Neil H. Timm, University of Pittsburgh The SAGE Handbook of Quantitative Methodology for the Social Sciences is the definitive reference for teachers, students, and researchers of quantitative methods in the social sciences, as it provides a comprehensive overview of the major techniques used in the field. The contributors, top methodologists and researchers, have written about their areas of expertise in ways that convey the utility of their respective techniques, but, where appropriate, they also offer a fair critique of these techniques. Relevance to real-world problems in the social sciences is an essential ingredient of each chapter and makes this an invaluable resource. The handbook is divided into six sections: • Scaling • Testing and Measurement • Models for Categorical Data • Models for Multilevel Data • Models for Latent Variables • Foundational Issues These sections, comprising twenty-four chapters, address topics in scaling and measurement, advances in statistical modeling methodologies, and broad philosophical themes and foundational issues that transcend many of the quantitative methodologies covered in the book. The Handbook is indispensable to the teaching, study, and research of quantitative methods and will enable readers to develop a level of understanding of statistical techniques commensurate with the most recent, state-of-the-art, theoretical developments in the field. It provides the foundations for quantitative research, with cutting-edge insights on the effectiveness of each method, depending on the data and distinct research situation.
Download or read book Models for Discrete Longitudinal Data written by Geert Molenberghs and published by Springer Science & Business Media. This book was released on 2006-08-30 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.
Download or read book Advances In Doctoral Research In Management written by Graeme Hutcheson and published by World Scientific. This book was released on 2006-07-18 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the academic realm, doctoral research plays a vital role in the advancement of knowledge. In areas ranging from strategy and international business to marketing, finance and operations management, the contributions in this volume represent the very best in doctoral research in the field of management worldwide.This first book in the Advances in Doctoral Research in Management series includes both doctoral research papers and a section on doctoral research notes consisting of shorter versions of extended monographs. There is also a section on research methodology papers that builds awareness and provides applications of new methodological concepts, techniques and tools.
Download or read book Research Methods for Organizational Studies written by Donald P. Schwab and published by Psychology Press. This book was released on 2013-06-17 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revision of a best selling research methods textbook introduces social science methods as applied broadly to the study of issues that arise as part of organizational life. These include issues involving organizational participants such as managers, teachers, customers, patients and clients, and transactions within and between organizations. In this new edition, chapter 19 now focuses on describing the modeling process and outcomes. An entirely new chapter 20 now addresses challenges to modeling. It goes substantially beyond a discussion of statistical inference. It also discusses issues in interpreting variance, explained estimates, and standardized and unstandardized regression coefficients. A new capstone chapter 21 helps students recognize good research. This textbook is accompanied by an Instructor's Manual for course use.
Download or read book Contemporary Empirical Methods in Software Engineering written by Michael Felderer and published by Springer Nature. This book was released on 2020-08-27 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.