Download or read book An Introduction to Operators on the Hardy Hilbert Space written by Ruben A. Martinez-Avendano and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them. Blending techniques from "soft" and "hard" analysis, the book contains clear and beautiful proofs. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
Download or read book An Introduction to Hilbert Space written by N. Young and published by Cambridge University Press. This book was released on 1988-07-21 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is an introduction to the theory of Hilbert space and its applications. The notion of Hilbert space is central in functional analysis and is used in numerous branches of pure and applied mathematics. Dr Young has stressed applications of the theory, particularly to the solution of partial differential equations in mathematical physics and to the approximation of functions in complex analysis. Some basic familiarity with real analysis, linear algebra and metric spaces is assumed, but otherwise the book is self-contained. It is based on courses given at the University of Glasgow and contains numerous examples and exercises (many with solutions). Thus it will make an excellent first course in Hilbert space theory at either undergraduate or graduate level and will also be of interest to electrical engineers and physicists, particularly those involved in control theory and filter design.
Download or read book An Introduction to Operators on the Hardy Hilbert Space written by Ruben A. Martinez-Avendano and published by Springer Science & Business Media. This book was released on 2007 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is operator theory on the Hardy space H2, also called the Hardy-Hilbert space. This is a popular area, partially because the Hardy-Hilbert space is the most natural setting for operator theory. A reader who masters the material covered in this book will have acquired a firm foundation for the study of all spaces of analytic functions and of operators on them. The goal is to provide an elementary and engaging introduction to this subject that will be readable by everyone who has understood introductory courses in complex analysis and in functional analysis. The exposition, blending techniques from "soft" and "hard" analysis, is intended to be as clear and instructive as possible. Many of the proofs are very elegant. This book evolved from a graduate course that was taught at the University of Toronto. It should prove suitable as a textbook for beginning graduate students, or even for well-prepared advanced undergraduates, as well as for independent study. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
Download or read book Hardy Classes and Operator Theory written by Marvin Rosenblum and published by Courier Corporation. This book was released on 1997-01-01 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise treatment focuses on theory of shift operators, Toeplitz operators and Hardy classes of vector- and operator-valued functions. Topics include general theory of shift operators on a Hilbert space, use of lifting theorem to give a unified treatment of interpolation theorems of the Pick-Nevanlinna and Loewner types, more. Appendix. Bibliography. 1985 edition.
Download or read book An Introduction to Hankel Operators written by Jonathan R. Partington and published by Cambridge University Press. This book was released on 1988 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hankel operators are of wide application in mathematics and engineering and this account of them is both elementary and rigorous.
Download or read book Operator Theory in Function Spaces written by Kehe Zhu and published by American Mathematical Soc.. This book was released on 2007 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
Download or read book Operators on Hilbert Space written by V. S. Sunder and published by Springer. This book was released on 2016-08-05 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primarily objective of the book is to serve as a primer on the theory of bounded linear operators on separable Hilbert space. The book presents the spectral theorem as a statement on the existence of a unique continuous and measurable functional calculus. It discusses a proof without digressing into a course on the Gelfand theory of commutative Banach algebras. The book also introduces the reader to the basic facts concerning the various von Neumann–Schatten ideals, the compact operators, the trace-class operators and all bounded operators.
Download or read book Operator Analysis written by Jim Agler and published by Cambridge University Press. This book was released on 2020-03-26 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph, aimed at graduate students and researchers, explores the use of Hilbert space methods in function theory. Explaining how operator theory interacts with function theory in one and several variables, the authors journey from an accessible explanation of the techniques to their uses in cutting edge research.
Download or read book Noncommutative Function Theoretic Operator Theory and Applications written by Joseph A. Ball and published by Cambridge University Press. This book was released on 2021-12-16 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise monograph explores how core ideas in Hardy space function theory and operator theory continue to be useful and informative in new settings, leading to new insights for noncommutative multivariable operator theory. Beginning with a review of the confluence of system theory ideas and reproducing kernel techniques, the book then covers representations of backward-shift-invariant subspaces in the Hardy space as ranges of observability operators, and representations for forward-shift-invariant subspaces via a Beurling–Lax representer equal to the transfer function of the linear system. This pair of backward-shift-invariant and forward-shift-invariant subspace form a generalized orthogonal decomposition of the ambient Hardy space. All this leads to the de Branges–Rovnyak model theory and characteristic operator function for a Hilbert space contraction operator. The chapters that follow generalize the system theory and reproducing kernel techniques to enable an extension of the ideas above to weighted Bergman space multivariable settings.
Download or read book An Introduction to Hankel Operators written by Jonathan R. Partington and published by Cambridge University Press. This book was released on 1988 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hankel operators are of wide application in mathematics and engineering and this account of them is both elementary and rigorous.
Download or read book Composition Operators on Spaces of Analytic Functions written by Carl C. Cowen Jr. and published by Routledge. This book was released on 2019-03-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of composition operators lies at the interface of analytic function theory and operator theory. Composition Operators on Spaces of Analytic Functions synthesizes the achievements of the past 25 years and brings into focus the broad outlines of the developing theory. It provides a comprehensive introduction to the linear operators of composition with a fixed function acting on a space of analytic functions. This new book both highlights the unifying ideas behind the major theorems and contrasts the differences between results for related spaces. Nine chapters introduce the main analytic techniques needed, Carleson measure and other integral estimates, linear fractional models, and kernel function techniques, and demonstrate their application to problems of boundedness, compactness, spectra, normality, and so on, of composition operators. Intended as a graduate-level textbook, the prerequisites are minimal. Numerous exercises illustrate and extend the theory. For students and non-students alike, the exercises are an integral part of the book. By including the theory for both one and several variables, historical notes, and a comprehensive bibliography, the book leaves the reader well grounded for future research on composition operators and related areas in operator or function theory.
Download or read book Operator Theory and Arithmetic in H infinity written by Hari Bercovici and published by American Mathematical Soc.. This book was released on 1988 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jordan's classification theorem for linear transformations on a finite-dimensional vector space is a natural highlight of the deep relationship between linear algebra and the arithmetical properties of polynomial rings. Because the methods and results of finite-dimensional linear algebra seldom extend to or have analogs in infinite-dimensional operator theory, it is therefore remarkable to have a class of operators which has a classification theorem analogous to Jordan's classical result and has properties closely related to the arithmetic of the ring $H^{\infty}$ of bounded analytic functions in the unit disk. $C_0$ is such a class and is the central object of study in this book.A contraction operator belongs to $C_0$ if and only if the associated functional calculus on $H^{\infty}$ has a nontrivial kernel. $C_0$ was discovered by Bela Sz.-Nagy and Ciprian Foias in their work on canonical models for contraction operators on Hilbert space. Besides their intrinsic interest and direct applications, operators of class $C_0$ are very helpful in constructing examples and counterexamples in other branches of operator theory. In addition, $C_0$ arises in certain problems of control and realization theory.In this survey work, the author provides a unified and concise presentation of a subject that was covered in many articles. The book describes the classification theory of $C_0$ and relates this class to other subjects such as general dilation theory, stochastic realization, representations of convolution algebras, and Fredholm theory. This book should be of interest to operator theorists as well as theoretical engineers interested in the applications of operator theory. In an effort to make the book as self-contained as possible, the author gives an introduction to the theory of dilations and functional models for contraction operators. Prerequisites for this book are a course in functional analysis and an acquaintance with the theory of Hardy spaces in the unit disk. In addition, knowledge of the trace class of operators is necessary in the chapter on weak contractions.
Download or read book Pick Interpolation and Hilbert Function Spaces written by Jim Agler and published by American Mathematical Society. This book was released on 2023-02-22 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.
Download or read book Representation Theorems in Hardy Spaces written by Javad Mashreghi and published by Cambridge University Press. This book was released on 2009-03-19 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane.
Download or read book Infinite dimensional Analysis Operators In Hilbert Space Stochastic Calculus Via Representations And Duality Theory written by Palle Jorgensen and published by World Scientific. This book was released on 2021-01-15 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to make available to beginning graduate students, and to others, some core areas of analysis which serve as prerequisites for new developments in pure and applied areas. We begin with a presentation (Chapters 1 and 2) of a selection of topics from the theory of operators in Hilbert space, algebras of operators, and their corresponding spectral theory. This is a systematic presentation of interrelated topics from infinite-dimensional and non-commutative analysis; again, with view to applications. Chapter 3 covers a study of representations of the canonical commutation relations (CCRs); with emphasis on the requirements of infinite-dimensional calculus of variations, often referred to as Ito and Malliavin calculus, Chapters 4-6. This further connects to key areas in quantum physics.
Download or read book A Hilbert Space Problem Book written by P.R. Halmos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Preface: "This book was written for the active reader. The first part consists of problems, frequently preceded by definitions and motivation, and sometimes followed by corollaries and historical remarks... The second part, a very short one, consists of hints... The third part, the longest, consists of solutions: proofs, answers, or contructions, depending on the nature of the problem.... This is not an introduction to Hilbert space theory. Some knowledge of that subject is a prerequisite: at the very least, a study of the elements of Hilbert space theory should proceed concurrently with the reading of this book."
Download or read book Hardy Spaces written by Nikolaï Nikolski and published by Cambridge University Press. This book was released on 2019-01-31 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate text covering the theory of Hardy spaces from its origins to the present, with concrete applications and solved exercises.