Download or read book An Introduction to Data Driven Control Systems written by Ali Khaki-Sedigh and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Data-Driven Control Systems An introduction to the emerging dominant paradigm in control design Model-based approaches to control systems design have long dominated the control systems design methodologies. However, most models require substantial prior or assumed information regarding the plant’s structure and internal dynamics. The data-driven paradigm in control systems design, which has proliferated rapidly in recent decades, requires only observed input-output data from plants, making it more flexible and broadly applicable. An Introduction to Data-Driven Control Systems provides a foundational overview of data-driven control systems methodologies. It presents key concepts and theories in an accessible way, without the need for the complex mathematics typically associated with technical publications in the field, and raises the important issues involved in applying these approaches. The result is a highly readable introduction to what promises to become the dominant control systems design paradigm. Readers will also find: An overview of philosophical-historical issues accompanying the emergence of data-driven control systems Design analysis of several conventional data-driven control systems design methodologies Algorithms and simulation results, with numerous examples, to facilitate the implementation of methods An Introduction to Data-Driven Control Systems is ideal for students and researchers in control theory or any other research area related to plant design and production.
Download or read book An Introduction to Data Driven Control Systems written by Ali Khaki-Sedigh and published by John Wiley & Sons. This book was released on 2023-11-10 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Data-Driven Control Systems An introduction to the emerging dominant paradigm in control design Model-based approaches to control systems design have long dominated the control systems design methodologies. However, most models require substantial prior or assumed information regarding the plant’s structure and internal dynamics. The data-driven paradigm in control systems design, which has proliferated rapidly in recent decades, requires only observed input-output data from plants, making it more flexible and broadly applicable. An Introduction to Data-Driven Control Systems provides a foundational overview of data-driven control systems methodologies. It presents key concepts and theories in an accessible way, without the need for the complex mathematics typically associated with technical publications in the field, and raises the important issues involved in applying these approaches. The result is a highly readable introduction to what promises to become the dominant control systems design paradigm. Readers will also find: An overview of philosophical-historical issues accompanying the emergence of data-driven control systems Design analysis of several conventional data-driven control systems design methodologies Algorithms and simulation results, with numerous examples, to facilitate the implementation of methods An Introduction to Data-Driven Control Systems is ideal for students and researchers in control theory or any other research area related to plant design and production.
Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Download or read book Data Driven Modeling Filtering and Control written by Carlo Novara and published by Institution of Engineering and Technology. This book was released on 2019-07-10 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientific research in many engineering fields has been shifting from traditional first-principle-based to data-driven or evidence-based theories. The latter methods may enable better system design, based on more accurate and verifiable information.
Download or read book Control System Design written by Bernard Friedland and published by Courier Corporation. This book was released on 2012-03-08 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.
Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.
Download or read book An Introduction to Linear Control Systems written by Thomas E. Fortmann and published by CRC Press. This book was released on 1977-10-01 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Download or read book Optimal Control Theory written by Donald E. Kirk and published by Courier Corporation. This book was released on 2012-04-26 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.
Download or read book Data Science for Business written by Foster Provost and published by "O'Reilly Media, Inc.". This book was released on 2013-07-27 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
Download or read book The Koopman Operator in Systems and Control written by Alexandre Mauroy and published by Springer Nature. This book was released on 2020-02-22 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.
Download or read book Data Driven Modeling Scientific Computation written by Jose Nathan Kutz and published by . This book was released on 2013-08-08 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Download or read book Driven by Data written by Paul Bambrick-Santoyo and published by John Wiley & Sons. This book was released on 2010-04-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a practical guide for improving schools dramatically that will enable all students from all backgrounds to achieve at high levels. Includes assessment forms, an index, and a DVD.
Download or read book Machine Learning Control Taming Nonlinear Dynamics and Turbulence written by Thomas Duriez and published by Springer. This book was released on 2016-11-02 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
Download or read book Feedback Control Theory written by John C. Doyle and published by Courier Corporation. This book was released on 2013-04-09 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Download or read book Introduction to Modeling and Control of Internal Combustion Engine Systems written by Lino Guzzella and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.
Download or read book Prognostics and Health Management of Engineering Systems written by Nam-Ho Kim and published by Springer. This book was released on 2016-10-24 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.