Download or read book An Informal Introduction to Gauge Field Theories written by Ian J. R. Aitchison and published by Cambridge University Press. This book was released on 2007-09-27 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Four forces are dominant in physics: gravity, electromagnetism and the weak and strong nuclear forces. Quantum electrodynamics - the highly successful theory of the electromagnetic interaction - is a gauge field theory. In this short book Dr Aitchison gives an introduction to these theories, a knowledge of which is essential in understanding modern particle physics.
Download or read book An Informal Introduction to Gauge Field Theories written by Ian Johnston Rhind Aitchison and published by . This book was released on 1982 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Path Integral Quantization and Stochastic Quantization written by Michio Masujima and published by Springer. This book was released on 2003-07-01 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. For the description of the classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Harniltonian formalisni is derived from the Lagrangian formalism. In the standard formalism of quantum mechanics, we usually make use of the Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism of quantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Bsed on the optical analogy, we obtain the Schrodinger equation as a result of the inverse of the Eikonal approximation to the Hamilton Jacobi equation, and thus we arrive at "wave mechanics" . The second formalism of quantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion frorn consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two forrnalisrns make up the Hamiltonian formalism of quantum me chanics.
Download or read book Particles And Fields Proceedings Of The Ixth Jorge Andre Swieca Summer School written by Joao Carlos Alves Barata and published by World Scientific. This book was released on 1998-05-08 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the IXth Jorge André Swieca Summer School — Particles and Fields — held at Campos do Jordao in February 1997.It surveys some of the most interesting research topics in theoretical physics, like duality theory, quantum field theory in curved space-time, supersymmetry and the standard model, differential geometry and its applications in physics and cosmic ray physics.
Download or read book INTRODUCTION TO PARTICLE PHYSICS written by M. P. KHANNA and published by PHI Learning Pvt. Ltd.. This book was released on 1999-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and well-organized book focusses on the phenomeno-logical aspects of Particle Physics. It strikes a fine balance between those texts that require sophisticated mathematical physics and those that are too elementary. For, unlike in many books on the subject, which give prominence to gauge theories, the attempt here is to lay stress on phenomenology _ an aspect that needs exposure among students of high energy physics.
Download or read book Interpreting Quantum Theories written by Laura Ruetsche and published by Oxford University Press. This book was released on 2011-06-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traditionally, philosophers of quantum mechanics have addressed exceedingly simple systems: a pair of electrons in an entangled state, or an atom and a cat in Dr. Schrödinger's diabolical device. But recently, much more complicated systems, such as quantum fields and the infinite systems at the thermodynamic limit of quantum statistical mechanics, have attracted, and repaid, philosophical attention. Interpreting Quantum Theories has three entangled aims. The first is to guide those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame. The second aim is to develop and defend answers to some of those questions. Does quantum field theory demand or deserve a particle ontology? How (if at all) are different states of broken symmetry different? And what is the proper role of idealizations in working physics? The third aim is to highlight ties between the foundational investigation of QM infinity and philosophy more broadly construed, in particular by using the interpretive problems discussed to motivate new ways to think about the nature of physical possibility and the problem of scientific realism.
Download or read book Fields Symmetries and Quarks written by Ulrich Mosel and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised and extended edition of the book Fields, Symmetries, and Quarks, originally published by McGraw-Hill Book Company, Hamburg, 1989, contains a new chapter on electroweak interactions which has also grown out of lectures that I have given in the meantime. In addition, a number of changes, mainly in the metric used, in the discussion of the theory of strong interactions, QCD, and in the chapter on hadron physics, have been made and errors have been corrected. The motivation for this book, however, is still the same as it was 10 years ago: This is a book on quantum field theory and our present understanding of leptons and hadrons for advanced students and the non-specialists and, in particular, the experimentalists working on problems of nuclear and hadron physics. I am grateful to Dr. S. Leupold for a very careful reading of the revised manuscript, many corrections, and helpful suggestions and to C. Traxler for producing the figures and for constructive discussions.
Download or read book An Introduction To The Standard Model Of Particle Physics For The Non specialist written by Gerald E Marsh and published by World Scientific. This book was released on 2017-10-06 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes the reader from some elementary ideas about groups to the essence of the Standard Model of particle physics along a relatively straight and intuitive path. Groups alone are first used to arrive at a classical analog of the Dirac equation. Using elementary quantum mechanics, this analog can be turned into the actual Dirac equation, which governs the motion of the quarks and leptons of the Standard Model. After an introduction to the gauge principle, the groups introduced in the beginning of the book are used to give an introduction to the Standard Model. The idea is to give an Olympian view of this evolution, one that is often missing when absorbing the detailed subject matter of the Standard Model as presented in an historical approach to the subject.
Download or read book Quanta Logic and Spacetime written by Stephen Allan Selesnick and published by World Scientific. This book was released on 2003 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this expanded edition of Quanta, Logic and Spacetime, the logical base is greatly broadened and quantum-computational aspects of the approach are brought to the fore. The first two parts of this edition may indeed be regarded as providing a self-contained and logic-based foundation for ? and an introduction to ? the enterprise known as quantum computing.The rest of the work takes on the task (as in the first edition) of computing from first principles certain dynamical expressions which turn out to compare favorably with the Lagrangian densities of the (massless) Standard Model, including gravity. The logic of this process is now subject to greater formal rigor than was possible in the first edition, and the central thesis ? that quantum physics at a fundamental level may itself be realized as a species of quantum computation ? is strongly underscored.
Download or read book Introduction to the Physics of Electron Emission written by Kevin L. Jensen and published by John Wiley & Sons. This book was released on 2017-09-15 with total page 716 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, in-depth description of the physics behind electron emission physics and its usage in science and technology Electron emission is both a fundamental phenomenon and an enabling component that lies at the very heart of modern science and technology. Written by a recognized authority in the field, with expertise in both electron emission physics and electron beam physics, An Introduction to Electron Emission provides an in-depth look at the physics behind thermal, field, photo, and secondary electron emission mechanisms, how that physics affects the beams that result through space charge and emittance growth, and explores the physics behind their utilization in an array of applications. The book addresses mathematical and numerical methods underlying electron emission, describing where the equations originated, how they are related, and how they may be correctly used to model actual sources for devices using electron beams. Writing for the beam physics and solid state communities, the author explores applications of electron emission methodology to solid state, statistical, and quantum mechanical ideas and concepts related to simulations of electron beams to condensed matter, solid state and fabrication communities. Provides an extensive description of the physics behind four electron emission mechanisms—field, photo, and secondary, and how that physics relates to factors such as space charge and emittance that affect electron beams. Introduces readers to mathematical and numerical methods, their origins, and how they may be correctly used to model actual sources for devices using electron beams Demonstrates applications of electron methodology as well as quantum mechanical concepts related to simulations of electron beams to solid state design and manufacture Designed to function as both a graduate-level text and a reference for research professionals Introduction to the Physics of Electron Emission is a valuable learning tool for postgraduates studying quantum mechanics, statistical mechanics, solid state physics, electron transport, and beam physics. It is also an indispensable resource for academic researchers and professionals who use electron sources, model electron emission, develop cathode technologies, or utilize electron beams.
Download or read book Laws of Nature written by Friedel Weinert and published by Walter de Gruyter. This book was released on 2011-05-02 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Universe of General Relativity written by A.J. Kox and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Outgrowth of 6th Int'l Conference on the History of General Relativity, held in Amsterdam on June 26-29, 2002 Contributions from notable experts offer both new and historical insights on gravitation, general relativity, cosmology, unified field theory, and the history of science Topics run gamet from detailed mathematical discussions to more personal recollections of relativity as seen through the eyes of the public and renowned relativists
Download or read book Lorentz Group Cpt And Neutrinos Proceedings Of The International Workshop written by A E Chubykalo and published by World Scientific. This book was released on 2000-08-30 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics in this volume range from mathematical aspects of the theory of the Poincaré group, Clifford algebras and the CPT theorem, through new theoretical physical constructions and concepts (such as the physical significance of the 4-potential, the interplay between quantum mechanics and gravity, Majorana-like models, the photon as a composite particle, action-at-a-distance and superluminal phenomena), to experiments in neutrino physics. The book will be of interest to graduate students and researchers working in fundamental physics and phenomenology, and also to experimentalists.
Download or read book Clifford Algebras and Their Application in Mathematical Physics written by Volker Dietrich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Download or read book Relativistic Quantum Mechanics and Quantum Fields written by Ta-you Wu and published by World Scientific. This book was released on 1991 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: A sequel to the well received book, Quantum Mechanics by T Y Wu, this book carries on where the earlier volume ends. This present volume follows the generally pedagogic style of Quantum Mechanics. The scope ranges from relativistic quantum mechanics to an introduction to quantum field theory with quantum electrodynamics as the basic example and ends with an exposition of important issues related to the standard model. The book presents the subject in basic and easy-to-grasp notions which will enhance the purpose of this book as a useful textbook in the area of relativistic quantum mechanics and quantum electrodynamics.
Download or read book An Invitation to Quantum Field Theory written by Luis Alvarez-Gaumé and published by Springer. This book was released on 2011-11-25 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to Quantum Field Theory (QFT) at an elementary level—with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework.
Download or read book Generated Dynamics of Markov and Quantum Processes written by Martin Janßen and published by Springer. This book was released on 2016-04-28 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put into the context of generated stochastic processes. Classical mechanics and classical field theory are deterministic processes which emerge when fluctuations in relevant variables are negligible. Quantum mechanics and quantum field theory consider genuine quantum processes. Equilibrium and non-equilibrium statistics apply to the regime where relaxing Markov processes emerge from quantum processes by omission of a large number of uncontrollable variables. Systems with many variables often self-organize in such a way that only a few slow variables can serve as relevant variables. Symmetries and topological classes are essential in identifying such relevant variables. The third aim of this book is to provide conceptually general methods of solutions which can serve as starting points to find relevant variables as to apply best-practice approximation methods. Such methods are available through generating functionals. The potential reader is a graduate student who has heard already a course in quantum theory and equilibrium statistical physics including the mathematics of spectral analysis (eigenvalues, eigenvectors, Fourier and Laplace transformation). The reader should be open for a unifying look on several topics.