Download or read book Direct Numerical Simulations of Gas Liquid Multiphase Flows written by Grétar Tryggvason and published by Cambridge University Press. This book was released on 2011-03-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.
Download or read book Fluid Simulation for Computer Graphics written by Robert Bridson and published by CRC Press. This book was released on 2015-09-18 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction, the second edition of Fluid Simulation for Computer Graphics shows you how to animate fully three-dimensional incompressible flow. It covers all the aspects of fluid simulation, from the mathematics and algorithms to implementation, while making revisions and updates to reflect changes in the field since the first edition. Highlights of the Second Edition New chapters on level sets and vortex methods Emphasizes hybrid particle–voxel methods, now the industry standard approach Covers the latest algorithms and techniques, including: fluid surface reconstruction from particles; accurate, viscous free surfaces for buckling, coiling, and rotating liquids; and enhanced turbulence for smoke animation Adds new discussions on meshing, particles, and vortex methods The book changes the order of topics as they appeared in the first edition to make more sense when reading the first time through. It also contains several updates by distilling author Robert Bridson’s experience in the visual effects industry to highlight the most important points in fluid simulation. It gives you an understanding of how the components of fluid simulation work as well as the tools for creating your own animations.
Download or read book Advances in Fluid Mechanics written by Dia Zeidan and published by Springer Nature. This book was released on 2022-06-06 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book provides invited and reviewed contributions in mathematical, physical and experimental modelling and simulations in all fluid mechanics branches. Contributions explore the emerging and state-of-the-art tools in the field authored by well-established researchers to derive improved performance of modelling and simulations. Serving the multidisciplinary fluid mechanics community, this book aims to publish new research work that enhances the prediction and understanding of fluid mechanics and balances from academic theory to practical applications through modelling, numerical studies, algorithms and simulation. The book offers researchers, students and practitioners significant insights on modelling and simulations in fluid mechanics. It offers readers a range of academic contributions on fluid mechanics by researchers that have become leaders in their field. The research work presented in this book will add values to the existing literature in terms of what needs to be done better to direct modelling and simulations towards a growing and rapidly developing field.
Download or read book CRC Handbook of Thermal Engineering written by Raj P. Chhabra and published by CRC Press. This book was released on 2017-11-08 with total page 1649 pages. Available in PDF, EPUB and Kindle. Book excerpt: The CRC Handbook of Thermal Engineering, Second Edition, is a fully updated version of this respected reference work, with chapters written by leading experts. Its first part covers basic concepts, equations and principles of thermodynamics, heat transfer, and fluid dynamics. Following that is detailed coverage of major application areas, such as bioengineering, energy-efficient building systems, traditional and renewable energy sources, food processing, and aerospace heat transfer topics. The latest numerical and computational tools, microscale and nanoscale engineering, and new complex-structured materials are also presented. Designed for easy reference, this new edition is a must-have volume for engineers and researchers around the globe.
Download or read book Bubbly Flows written by Martin Sommerfeld and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.
Download or read book OpenFOAM written by J. Miguel Nóbrega and published by Springer. This book was released on 2019-01-24 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016. The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM® Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM® technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM® (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM® provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities.
Download or read book Computational Methods for Multiphase Flow written by Andrea Prosperetti and published by Cambridge University Press. This book was released on 2009-06-25 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.
Download or read book Moving Particle Semi implicit Method written by Seiichi Koshizuka and published by Academic Press. This book was released on 2018-06-01 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Moving Particle Semi-implicit Method: A Meshfree Particle Method for Fluid Dynamics begins by familiarizing the reader with basic theory that supports their journey through sections on advanced MPH methods. The unique insights that this method provides include fluid-structure interaction, non-Newtonian flow, and cavitation, making it relevant to a wide range of applications in the mechanical, structural, and nuclear industries, and in bioengineering. Co-authored by the originator of the MPS method, this book is the most authoritative guide available. It will be of great value to students, academics and researchers in industry. - Presents the differences between MPH and SPH, helping readers choose between methods for different purposes - Provides pieces of computer code that readers can use in their own simulations - Includes the full, extended algorithms - Explores the use of MPS in a range of industries and applications, including practical advice
Download or read book Falling Liquid Films written by S. Kalliadasis and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.
Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.
Download or read book Fluid Dynamics at Interfaces written by Wei Shyy and published by Cambridge University Press. This book was released on 1999-09-28 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book experts discuss research and applications in interfacial fluid dynamics.
Download or read book The Lattice Boltzmann Method written by Timm Krüger and published by Springer. This book was released on 2016-11-07 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
Download or read book Computational Methods for Multiphase Flows in Porous Media written by Zhangxin Chen and published by SIAM. This book was released on 2006-04-01 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.
Download or read book Multiphase Flow Handbook Second Edition written by Efstathios Michaelides and published by CRC Press. This book was released on 2016-10-26 with total page 1559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.
Download or read book Computational Fluid Structure Interaction written by Yuri Bazilevs and published by John Wiley & Sons. This book was released on 2013-01-25 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
Download or read book Turbulence and Interactions written by Michel Deville and published by Springer Science & Business Media. This book was released on 2010-09-28 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains six keynote lectures and 44 contributed papers of the TI 2009 conference that was held in Saint-Luce, La Martinique, May 31-June 5, 2009. These lectures address the latest developments in direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, droplets, two-phase flows, etc. The present monograph is a snapshot of the state-of-the-art in the field of turbulence with a broad view on theory, experiments and numerical simulations.
Download or read book Numerical Methods for Fluid Dynamics written by Institute of Mathematics and Its Applications and published by . This book was released on 1982 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: