EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Experimental and Numerical Investigation of Performance and Emissions in Compression Ignition Engines with Alternative Fuels

Download or read book Experimental and Numerical Investigation of Performance and Emissions in Compression Ignition Engines with Alternative Fuels written by Shahid Imran and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Experimental and Numerical Study of the Combustion and Emissions of Natural Gas diesel Dual fuel Engine Under Different Engine Load speed Conditions

Download or read book Experimental and Numerical Study of the Combustion and Emissions of Natural Gas diesel Dual fuel Engine Under Different Engine Load speed Conditions written by Amin Yousefi and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Universal concerns about degradation in air quality, stringent emissions regulations, energy scarcity, and global warming have prompted research and development of compressed ignition engines using alternative combustion concepts. Natural gas/diesel dual-fuel combustion is an advanced combustion concept for compression ignition diesel engines, which has attracted global attention in recent years. This combustion concept is accomplished by creating reactivity stratification in the cylinder via the use of two fuels characterized by distinctly different reactivities. The low reactivity and main fuel (i.e., natural gas) is firstly premixed with air and then charged into the cylinder through the intake manifold, and the high reactivity fuel (i.e., diesel) is then injected into the charged mixture through a direct injector. This combustion concept offers prominent benefits in terms of a significant reduction of particulate matter (PM) and sometimes nitrogen oxides (NOx) emissions while maintaining comparable fuel efficiency compared to diesel engine. However, low thermal efficiency and high greenhouse gas (GHG) emissions under low load conditions are major challenges which prevented the implementation of dual-fuel concept in commercial automative engines. The present study investigates different combustion approaches with the aim to enhance combustion performance and reduce emissions of unburned methane, CO, NOx, soot, and GHG of natural gas/diesel dual-fuel engines under different engine load-speed conditions. In particular, the main focus of this thesis is on low load conditions where GHG emissions of conventional natural gas/diesel dual-fuel engine is much higher than that of conventional diesel engine. Alongside the experimental study, a computational fluid dynamic (CFD) model is developed to help understand the behaviour of natural gas/diesel dual-fuel combustion process under different engine load-speed conditions. The studied approaches showed that the fuel efficiency and GHG emissions of natural gas/diesel dual-fuel engine can be significantly improved under low engine load conditions compared to diesel engine.

Book Advances in Compression Ignition Natural Gas     Diesel Dual Fuel Engines

Download or read book Advances in Compression Ignition Natural Gas Diesel Dual Fuel Engines written by Hongsheng Guo and published by Frontiers Media SA. This book was released on 2021-03-23 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hydrogen for Future Thermal Engines

Download or read book Hydrogen for Future Thermal Engines written by Efstathios-Al. Tingas and published by Springer Nature. This book was released on 2023-07-14 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the potential of hydrogen combustion in thermal engines and serves as a foundation for future research. Hydrogen, a well-established energy carrier, has been used in internal combustion engines for centuries, but despite progress and industry interest, hydrogen engines have yet to reach mass production. In light of recent efforts to combat climate change with clean energy and environmentally-friendly technologies, the use of hydrogen in thermal engines is gaining momentum. This book examines the unique challenges of hydrogen combustion due to its wide flammability limits, high auto-ignition temperature, and high diffusivity. It reviews current knowledge on the fundamental and practical aspects of hydrogen combustion and considers current developments and potential future advancement.

Book Characteristics and Control of Low Temperature Combustion Engines

Download or read book Characteristics and Control of Low Temperature Combustion Engines written by Rakesh Kumar Maurya and published by Springer. This book was released on 2017-11-03 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with novel advanced engine combustion technologies having potential of high fuel conversion efficiency along with ultralow NOx and particulate matter (PM) emissions. It offers insight into advanced combustion modes for efficient utilization of gasoline like fuels. Fundamentals of various advanced low temperature combustion (LTC) systems such as HCCI, PCCI, PPC and RCCI engines and their fuel quality requirements are also discussed. Detailed performance, combustion and emissions characteristics of futuristic engine technologies such as PPC and RCCI employing conventional as well as alternative fuels are analyzed and discussed. Special emphasis is placed on soot particle number emission characterization, high load limiting constraints, and fuel effects on combustion characteristics in LTC engines. For closed loop combustion control of LTC engines, sensors, actuators and control strategies are also discussed. The book should prove useful to a broad audience, including graduate students, researchers, and professionals Offers novel technologies for improved and efficient utilization of gasoline like fuels; Deals with most advanced and futuristic engine combustion modes such as PPC and RCCI; Comprehensible presentation of the performance, combustion and emissions characteristics of low temperature combustion (LTC) engines; Deals with closed loop combustion control of advanced LTC engines; State-of-the-art technology book that concisely summarizes the recent advancements in LTC technology. .

Book Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance

Download or read book Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance written by Richard Folkson and published by Woodhead Publishing. This book was released on 2022-07-27 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation, Second Edition provides a comprehensive view of key developments in advanced fuels and vehicle technologies to improve the energy efficiency and environmental impact of the automotive sector. Sections consider the role of alternative fuels such as electricity, alcohol and hydrogen fuel cells, as well as advanced additives and oils in environmentally sustainable transport. Other topics explored include methods of revising engine and vehicle design to improve environmental performance and fuel economy and developments in electric and hybrid vehicle technologies. This reference will provide professionals, engineers and researchers of alternative fuels with an understanding of the latest clean technologies which will help them to advance the field. Those working in environmental and mechanical engineering will benefit from the detailed analysis of the technologies covered, as will fuel suppliers and energy producers seeking to improve the efficiency, sustainability and accessibility of their work. Provides a fully updated reference with significant technological advances and developments in the sector Presents analyses on the latest advances in electronic systems for emissions control, autonomous systems, artificial intelligence and legislative requirements Includes a strong focus on updated climate change predictions and consequences, helping the reader work towards ambitious 2050 climate change goals for the automotive industry

Book Numerical Simulation of Combustion and Unburnt Products in Dual fuel Compression ignition Engines with Multiple Injection

Download or read book Numerical Simulation of Combustion and Unburnt Products in Dual fuel Compression ignition Engines with Multiple Injection written by Arash Jamali and published by . This book was released on 2015 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural gas substitution for diesel can result in significant reduction in pollutant emissions. Based on current fuel price projections, operating costs would be lower. With a high ignition temperature and relatively low reactivity, natural gas can enable promising approaches to combustion engine design. In particular, the combination of low reactivity natural gas and high reactivity diesel may allow for optimal operation as a reactivity-controlled compression ignition (RCCI) engine, which has potential for high efficiency and low emissions. In this computational study, a lean mixture of natural gas is ignited by direct injection of diesel fuel in a model of the heavy-duty CAT3401 diesel engine. Dual-fuel combustion of natural gas-diesel (NGD) may provide a wider range of reactivity control than other dual-fuel combustion strategies such as gasoline-diesel dual fuel. Accurate and efficient combustion modeling can aid NGD dual-fuel engine control and optimization. In this study, multi-dimensional simulation was performed using a nite-volume computational code for fuel spray, combustion and emission processes. Adaptive mesh refinement (AMR) and multi-zone reaction modeling enables simulation in a reasonable time. The latter approach avoids expensive kinetic calculations in every computational cell, with considerable speedup. Two approaches to combustion modeling are used within the Reynolds averaged Navier-Stokes (RANS) framework. The first approach uses direct integration of the detailed chemistry and no turbulence-chemistry interaction modeling. The model produces encouraging agreement between the simulation and experimental data. For reasonable accuracy and computation cost, a minimum cell size of 0.2 millimeters is suggested for NGD dual-fuel engine combustion. In addition, the role of different chemical reaction mechanism on the NGD dual-fuel combustion is considered with this model. This work considers fundamental questions regarding combustion in NGD dual-fuel combustion, particularly about how and where fuels react, and the difference between combustion in the dual fuel mode and conventional diesel mode. The results show that in part-load working condition main part of CH4 cannot burn and it has significant effect in high level of HC emission in NGD dual-fuel engine. The CFD results reveal that homogeneous mixture of CH4 and air is too lean, and it cannot ignite in regions that any species from C7H16 chemical mechanism does not exist. It is shown that multi-injection of diesel fuel with an early main injection can reduce HC emission significantly in the NGD dual-fuel engine. In addition, the results reveal that increasing the air fuel ratio by decreasing the air amount could be a promising idea for HC emission reduction in NGD dual-fuel engine, too.

Book Renewable Fuels for Sustainable Mobility

Download or read book Renewable Fuels for Sustainable Mobility written by Pravesh Chandra Shukla and published by Springer Nature. This book was released on 2023-05-06 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume discusses the use of renewable fuels for clean transportation and its applications on internal combustion engines. The contents focus on the key aspects of fuel production processes and its impact on various segments of the transportation sector and for sustainable mobility. Several kinds of fuels are assessed such as biofuels, alcohols, and hydrogen, and their effects on the combustion process are characterized by application. This volume will be of use to those working in academia and industry as well as energy experts and policy makers.

Book Investigation of the Performance and Emissions Characteristics of Dual Fuel Combustion in a Single Cylinder IDI Diesel Engine

Download or read book Investigation of the Performance and Emissions Characteristics of Dual Fuel Combustion in a Single Cylinder IDI Diesel Engine written by Johnnie L. Williams (Jr.) and published by . This book was released on 2018 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author's Abstract: Restrictions in the allowable exhaust gas emissions of diesel engines has become a driving factor in the design, development, and implementation of internal combustion (IC) engines. A dual fuel research engine concept was developed and implemented in an indirect injected engine in order to research combustion characteristics and emissions for non-road applications. The experimental engine was operated at a constant speed and load 2400 rpm and 5.5 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at 10%, 20%, 30%, and 40% by mass fraction with neat ultra-low sulfur diesel (ULSD#2). Peak pressure, maximum pressure rise rates, and heat release rates all increased with the increasing concentration of n-Butanol. MPRR increased by 127% and AHRR increased by 30.5% as a result of the shorter ignition delay and combustion duration. Ignition delay and combustion duration were reduced by 3.6% and 31.6% respectively. This occurred despite the lower cetane number of n-Butanol as a result of increased mixing due to the port fuel injection of the alcohol. NOx and soot were simultaneously reduced by 21% and 80% respectively. Carbon monoxide and unburned hydrocarbons emissions were increased for the dual fuel combustion strategies due to valve overlap. Results display large emission reductions of harmful pollutants, such as NOx and soot.

Book EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL  NATURAL GAS RCCI COMBUSTION IN A HEAVY DUTY DIESEL ENGINE

Download or read book EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL NATURAL GAS RCCI COMBUSTION IN A HEAVY DUTY DIESEL ENGINE written by and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract : Among the various alternative fuels, natural gas is considered as a leading candidate for heavy-duty applications due to its availability and applicability in conventional internal combustion diesel engines. Compared to their diesel counterparts natural gas fueled spark-ignited engines have a lower power density, reduced low-end torque capability, limited altitude performance, and ammonia emissions downstream of the three-way catalyst. The dual fuel diesel/natural gas engine does not suffer with the performance limitations of the spark-ignited concept due to the flexibility of switching between different fueling modes. Considerable research has already been conducted to understand the combustion behavior of dual fuel diesel/natural gas engines. As reported by most researchers, the major difficulty with dual fuel operation is the challenge of providing high levels of natural gas substitution, especially at low and medium loads. In this study extensive experimental and simulation studies were conducted to understand the combustion behavior of a heavy-duty diesel engine when operated with compressed natural gas (CNG) in a dual fuel regime. In one of the experimental studies, conducted on a 13 liter heavy-duty six cylinder diesel engine with a compression ratio of 16.7:1, it was found that at part loads high levels of CNG substitution could be achieved along with very low NOx and PM emissions by applying reactivity controlled compression ignition (RCCI) combustion. When compared to the diesel-only baseline, a 75% reduction in both NOx and PM emissions was observed at a 5 bar BMEP load point along with comparable fuel consumption values. Further experimental studies conducted on the 13 liter heavy-duty six cylinder diesel engine have shown that RCCI combustion targeting low NOx emissions becomes progressively difficult to control as the load is increased at a given speed or the speed is reduced at a given load. To overcome these challenges a number of simulation studies were conducted to quantify the in-cylinder conditions that are needed at high loads and low to medium engine speeds to effectively control low NOx RCCI combustion. A number of design parameters were analyzed in this study including exhaust gas recirculation (EGR) rate, CNG substitution, injection strategy, fuel injection pressure, fuel spray angle and compression ratio. The study revealed that lowering the compression ratio was very effective in controlling low NOx RCCI combustion. By lowering the base compression ratio by 4 points, to 12.7:1, a low NOx RCCI combustion was achieved at both 12 bar and 20 bar BMEP load points. The NOx emissions were reduced by 75% at 12 bar BMEP while fuel consumption was improved by 5.5%. For the 20 BMEP case, a 2% improvement in fuel consumption was achieved with an 87.5% reduction in NOx emissions. At both load points low PM emissions were observed with RCCI combustion. A low NOx RCCI combustion system has multiple advantages over other combustion approaches, these include; significantly lower NOx and PM emission which allows a reduction in aftertreatment cost and packaging requirements along with application of higher CNG substitution rates resulting in reduced CO2 emissions.

Book Natural Gas Engines

Download or read book Natural Gas Engines written by Kalyan Kumar Srinivasan and published by Springer. This book was released on 2018-11-03 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the various advanced reciprocating combustion engine technologies that utilize natural gas and alternative fuels for transportation and power generation applications. It is divided into three major sections consisting of both fundamental and applied technologies to identify (but not limited to) clean, high-efficiency opportunities with natural gas fueling that have been developed through experimental protocols, numerical and high-performance computational simulations, and zero-dimensional, multizone combustion simulations. Particular emphasis is placed on statutes to monitor fine particulate emissions from tailpipe of engines operating on natural gas and alternative fuels.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanical Engineering Technologies and Applications  Volume 3

Download or read book Mechanical Engineering Technologies and Applications Volume 3 written by Zied Driss and published by Bentham Science Publishers. This book was released on 2023-12-28 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on cases and studies of interest to mechanical engineers and industrial technicians. The considered applications in this volume are widely used in several industrial fields particularly in the automotive and aviation industries. Readers will understand the theory and techniques which are used in each application covered in each chapter. Volume 3 includes the following topics: Numerical simulations of three-dimensional laminar mixed convection heat transfer of water-based-Al2O3 nanofluid in an open cubic cavity with a heated block. Nonlinear formulations of Element-Free Galerkin Method (EFGM) for large deformation analysis of Ogden’s hyperelastic materials, emphasizing incompressibility and mesh distortion avoidance. Development of a 3D numerical model with LS-DYNA using a coupled SPH-FEM method to simulate hydraulic behavior of a Ski-Jump Spillway with dentates, showcasing precision through validation. Exploration of enhancing the inlet system of an LPG-H2 fueled engine using a static inclined blade turbine, analyzed through Computational Fluid Dynamics (CFD) simulations. Effective utilization of Artificial Neural Networks (ANN) in heat transfer applications, addressing issues like fouling in heat exchangers, showcasing their accuracy compared to experimental data. Investigation of the impact of nitrogen concentration on the structure and properties of ZrN coatings deposited by magnetron sputtering, evaluating variations in structural and mechanical properties. Forced convection in a horizontal cylindrical pipe with pseudoplastic fluid, considering uniform constant heat flux and uniform temperature as boundary conditions. Modeling and experimental study of a water solar collector coupled to an optimized solar still, aiming to enhance freshwater production in a solar distillation system under specific climatic conditions. Exploration of the effect of film thickness on the structure and properties of Ti-N films deposited by magnetron sputtering, utilizing theoretical and experimental analysis to confirm the rock salt TiN structure. The presented case studies and development approaches aim to provide readers with basic and applied information broadly related to mechanical engineering and technology. Readership Graduate students, PhD candidates and professionals seeking basic and applied information related to mechanical engineering and technology.

Book Experimental Investigation of the Equivalence Ratio Influence on Combustion  Performance and Exhaust Emissions of a Dual Fuel Diesel Engine Operating on Synthetic Biogas Fuel

Download or read book Experimental Investigation of the Equivalence Ratio Influence on Combustion Performance and Exhaust Emissions of a Dual Fuel Diesel Engine Operating on Synthetic Biogas Fuel written by and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Diesel and Gasoline Engines

Download or read book Diesel and Gasoline Engines written by Richard Viskup and published by . This book was released on 2020-02 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The internal combustion engine was invented around 1790 by various scientists and engineers worldwide. Since then the engines have gone through many modifications and improvements. Today, different applications of engines form a significant technological importance in our everyday lives, leading to the evolution of our modern civilization. The invention of diesel and gasoline engines has definitely changed our lifestyles as well as shaped our priorities. The current engines serve innumerable applications in various types of transportation, in harsh environments, in construction, in diverse industries, and also as back-up power supply systems for hospitals, security departments, and other institutions. However, heavy duty or light duty engines have certain major disadvantages, which are well known to everyone. With the increasing usage of diesel and gasoline engines, and the constantly rising number of vehicles worldwide, the main concern nowadays is engine exhaust emissions. This book looks at basic phenomena related to diesel and gasoline engines, combustion, alternative fuels, exhaust emissions, and mitigations.