EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Analysis of Structure Preserving Numerical Methods for Symplectic Eigenvalue Problems

Download or read book An Analysis of Structure Preserving Numerical Methods for Symplectic Eigenvalue Problems written by Ulrike Flaschka and published by . This book was released on 1989 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An analysis of structure preserving numerical methods for simplectic eigenvalue problems

Download or read book An analysis of structure preserving numerical methods for simplectic eigenvalue problems written by Ulrike Flaschka and published by . This book was released on 1989 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Symplectic Methods for the Symplectic Eigenproblem

Download or read book Symplectic Methods for the Symplectic Eigenproblem written by Heike Fassbender and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.

Book Numerical Methods for General and Structured Eigenvalue Problems

Download or read book Numerical Methods for General and Structured Eigenvalue Problems written by Daniel Kressner and published by Springer Science & Business Media. This book was released on 2006-01-20 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Book Structure Preserving Doubling Algorithms for Nonlinear Matrix Equations

Download or read book Structure Preserving Doubling Algorithms for Nonlinear Matrix Equations written by Tsung-Ming Huang and published by SIAM. This book was released on 2018-10-04 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms that have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high speed trains; present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils; and highlight the use of doubling algorithms in achieving robust solutions for notoriously challenging problems that other methods cannot.? Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations is intended for researchers and computational scientists, and graduate students may also find it of interest.

Book Numerical Algebra  Matrix Theory  Differential Algebraic Equations and Control Theory

Download or read book Numerical Algebra Matrix Theory Differential Algebraic Equations and Control Theory written by Peter Benner and published by Springer. This book was released on 2015-05-09 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.

Book Templates for the Solution of Algebraic Eigenvalue Problems

Download or read book Templates for the Solution of Algebraic Eigenvalue Problems written by Zhaojun Bai and published by SIAM. This book was released on 2000-01-01 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-scale problems of engineering and scientific computing often require solutions of eigenvalue and related problems. This book gives a unified overview of theory, algorithms, and practical software for eigenvalue problems. It organizes this large body of material to make it accessible for the first time to the many nonexpert users who need to choose the best state-of-the-art algorithms and software for their problems. Using an informal decision tree, just enough theory is introduced to identify the relevant mathematical structure that determines the best algorithm for each problem.

Book Algorithms for Linear Quadratic Optimization

Download or read book Algorithms for Linear Quadratic Optimization written by Vasile Sima and published by CRC Press. This book was released on 2021-12-17 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers theoretical, algorithmic and computational guidelines for solving the most frequently encountered linear-quadratic optimization problems. It provides an overview of recent advances in control and systems theory, numerical line algebra, numerical optimization, scientific computations and software engineering.

Book Proceedings of the Conference on Applied Mathematics and Scientific Computing

Download or read book Proceedings of the Conference on Applied Mathematics and Scientific Computing written by Zlatko Drmac and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together contributed papers presenting new results covering different areas of applied mathematics and scientific computing. Firstly, four invited lectures give state-of-the-art presentations in the fields of numerical linear algebra, shape preserving approximation and singular perturbation theory. Then an overview of numerical solutions to skew-Hamiltonian and Hamiltonian eigenvalue problems in system and control theory is given by Benner, Kressner and Mehrmann. The important issue of structure preserving algorithms and structured condition numbers is discussed. Costantini and Sampoli review the basic ideas of the abstract schemes and show that they can be used to solve any problem concerning the construction of spline curves subject to local constraints. Kvasov presents a novel approach in solving the problem of shape preserving spline interpolation. Formulating this problem as a differential multipoint boundary value problem for hyperbolic and biharmonic tension splines he considers its finite difference approximation. Miller and Shishkin consider the Black-Scholes equation that, for some values of the parameters, may be a singularly perturbed problem. They construct a new numerical method, on an appropriately fitted piecewise-uniform mesh, which is parameter-uniformly convergent.

Book The Matrix Eigenvalue Problem

Download or read book The Matrix Eigenvalue Problem written by David S. Watkins and published by SIAM. This book was released on 2007-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. This book also addresses a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. Theoretical and computational exercises guide students, step by step, to the results. Downloadable MATLAB programs, compiled by the author, are available on a supplementary Web site. Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. Ideal for graduate students, or as a reference book for researchers and users of eigenvalue codes.

Book Numerical Analysis 1997

Download or read book Numerical Analysis 1997 written by D.F. Griffiths and published by CRC Press. This book was released on 1997-12-05 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book forms a valuable guide to the direction in which current numerical analysis research is heading. It will be of particular interest to graduate students and researchers concerned with the theoretical and practical issues associated with scientific computation. The main topics include ordinary and partial differential equations, fluid flow, optimization, linear algebra, and approximation theory. Two recurring themes are the need for adaptive and structure preserving numerical methods. The work presented here has a list of direct applications that include colliding black holes, molecular dynamics, blow-up problems, and card shuffling.

Book Princeton Companion to Applied Mathematics

Download or read book Princeton Companion to Applied Mathematics written by Nicholas J. Higham and published by Princeton University Press. This book was released on 2015-09-09 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: The must-have compendium on applied mathematics This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index

Book Frontiers in Numerical Analysis

Download or read book Frontiers in Numerical Analysis written by James Blowey and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: A set of detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics. Each set of notes presents a self-contained guide to a current research area. Detailed proofs of key results are provided. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. Current (unsolved) problems are also described and directions for future research are given. This book is also suitable for professional mathematicians.

Book Handbook of Linear Algebra

Download or read book Handbook of Linear Algebra written by Leslie Hogben and published by CRC Press. This book was released on 2013-11-26 with total page 1838 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and

Book Matrix Computations

Download or read book Matrix Computations written by Gene H. Golub and published by JHU Press. This book was released on 2013-02-15 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.

Book Recent Developments in Structure Preserving Algorithms for Oscillatory Differential Equations

Download or read book Recent Developments in Structure Preserving Algorithms for Oscillatory Differential Equations written by Xinyuan Wu and published by Springer. This book was released on 2018-04-19 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques.

Book SIAM Journal on Matrix Analysis and Applications

Download or read book SIAM Journal on Matrix Analysis and Applications written by and published by . This book was released on 2007 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: