EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Optimization Algorithms on Matrix Manifolds

Download or read book Optimization Algorithms on Matrix Manifolds written by P.-A. Absil and published by Princeton University Press. This book was released on 2009-04-11 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

Book Numerical Methods for Stochastic Computations

Download or read book Numerical Methods for Stochastic Computations written by Dongbin Xiu and published by Princeton University Press. This book was released on 2010-07-01 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples

Book Numerical Analysis of Multiscale Problems

Download or read book Numerical Analysis of Multiscale Problems written by Ivan G. Graham and published by Springer Science & Business Media. This book was released on 2012-01-05 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.

Book An Introduction to Computational Stochastic PDEs

Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB® codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

Book Sparse Grids and Applications   Munich 2018

Download or read book Sparse Grids and Applications Munich 2018 written by Hans-Joachim Bungartz and published by Springer Nature. This book was released on 2022-03-14 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fifth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including uncertainty quantification, plasma physics simulations, and computational chemistry, to name but a few.

Book Adaptive Stochastic Optimization Techniques with Applications

Download or read book Adaptive Stochastic Optimization Techniques with Applications written by James A. Momoh and published by CRC Press. This book was released on 2015-12-02 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive Stochastic Optimization Techniques with Applications provides a single, convenient source for state-of-the-art information on optimization techniques used to solve problems with adaptive, dynamic, and stochastic features. Presenting modern advances in static and dynamic optimization, decision analysis, intelligent systems, evolutionary pro

Book Polynomial Chaos Methods for Hyperbolic Partial Differential Equations

Download or read book Polynomial Chaos Methods for Hyperbolic Partial Differential Equations written by Mass Per Pettersson and published by Springer. This book was released on 2015-03-10 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero. Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems. Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.

Book An Introduction to Computational Stochastic PDEs

Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.

Book Functional Analysis and Semi groups

Download or read book Functional Analysis and Semi groups written by Einar Hille and published by American Mathematical Soc.. This book was released on 1996-02-06 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early in 1952 it became obvious that a new printing would be needed, and new advances in the theory called for extensive revision. It has been completely rewritten, mostly by Phillips, and much has been added while keeping the existing framework. Thus, the algebraic tools play a major role, and are introduced early, leading to a more satisfactory operational calculus and spectral theory. The Laplace-Stieltjes transform methods, used by Hille, have not been replaced but rather supplemented by the new tools. - Foreword.

Book Applied Stochastic Differential Equations

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Book 75 Years of Mathematics of Computation

Download or read book 75 Years of Mathematics of Computation written by Susanne C. Brenner and published by American Mathematical Soc.. This book was released on 2020-07-29 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by SIAM. This book was released on 2022-02-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Book Computational Methods in Stochastic Dynamics

Download or read book Computational Methods in Stochastic Dynamics written by Manolis Papadrakakis and published by Springer Science & Business Media. This book was released on 2011-02-01 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the dawn of the 21st century, computational stochastic dynamics is an emerging research frontier. This book focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The book is primarily intended for researchers and post-graduate students in the fields of computational mechanics and stochastic structural dynamics. Nevertheless, practice engineers as well could benefit from it as most code provisions tend to incorporate probabilistic concepts in the analysis and design of structures. The book addresses mathematical and numerical issues in stochastic structural dynamics and connects them to real-world applications. It consists of 16 chapters dealing with recent advances in a wide range of related topics (dynamic response variability and reliability of stochastic systems, risk assessment, stochastic simulation of earthquake ground motions, efficient solvers for the analysis of stochastic systems, dynamic stability, stochastic modelling of heterogeneous materials). Numerical examples demonstrating the significance of the proposed methods are presented in each chapter.

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Error Control  Adaptive Discretizations  and Applications  Part 1

Download or read book Error Control Adaptive Discretizations and Applications Part 1 written by and published by Elsevier. This book was released on 2024-06-29 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Error Control, Adaptive Discretizations, and Applications, Volume 58, Part One highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this release cover hp adaptive Discontinuous Galerkin strategies driven by a posteriori error estimation with application to aeronautical flow problems, An anisotropic mesh adaptation method based on gradient recovery and optimal shape elements, and Model reduction techniques for parametrized nonlinear partial differential equations. - Covers multi-scale modeling - Includes updates on data-driven modeling - Presents the latest information on large deformations of multi-scale materials

Book Reliability Based Analysis and Design of Structures and Infrastructure

Download or read book Reliability Based Analysis and Design of Structures and Infrastructure written by Ehsan Noroozinejad Farsangi and published by CRC Press. This book was released on 2021-09-27 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.

Book Spectral Methods for Uncertainty Quantification

Download or read book Spectral Methods for Uncertainty Quantification written by Olivier Le Maitre and published by Springer Science & Business Media. This book was released on 2010-03-11 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.