EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aerosol   Cloud Interactions in a Global Model of Aerosol Microphysics

Download or read book Aerosol Cloud Interactions in a Global Model of Aerosol Microphysics written by Kirsty Jane Pringle and published by . This book was released on 2006 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aerosol Cloud Interactions from Urban  Regional  to Global Scales

Download or read book Aerosol Cloud Interactions from Urban Regional to Global Scales written by Yuan Wang and published by Springer. This book was released on 2015-05-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

Book Aerosol Cloud Climate Interactions

Download or read book Aerosol Cloud Climate Interactions written by Peter V. Hobbs and published by Academic Press. This book was released on 1993-07-22 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosol and clouds play important roles in determining the earth's climate, in ways that we are only beginning to comprehend. In conjunction with molecular scattering from gases, aerosol and clouds determine in part what fraction of solar radiation reaches the earth's surface, and what fraction of the longwave radiation from the earth escapes to space. This book provides an overview of the latest research on atmospheric aerosol and clouds and their effects on global climate. Subjects reviewed include the direct and indirect effects of aerosol on climate, the radiative properties of clouds and their effects on the Earth's radiation balance, the incorporation of cloud effects in numerical weather prediction models, and stratospheric aerosol and clouds.

Book Aerosol Microphysics I

    Book Details:
  • Author : W. H. Marlow
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-08
  • ISBN : 3642814247
  • Pages : 170 pages

Download or read book Aerosol Microphysics I written by W. H. Marlow and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The suggestion by Dr. Franklin S. Harris, Jr. , that these books be written arose pursuant to the editor's plaints that despite the implicitly or explicitly ack nowledged importance of both aerosols and particulate matter in innumerable domains of technology and human welfare, investigations of these subjects were generally not supported independently of the narrowest conceivable domains of their appli cations. Frank Harris, who has long been a contributor in one of the important domains of aerosol macrophysics, atmospheric optics, challenged the editor to elaborate his views. Ideally, they would have taken the form of a monograph; however, there is as yet an insufficient body of information to present a unified treatment. At the same time, substantial efforts are in progress in the component fields to hold the promise for the emergence of unifying elements which will even tually facilitate their presentation to be made with a high degree of integrity. There are numerous pertinent and systematic tie-ins between project-oriented aerosol work and basic physical investigations which are themselves quite closely akin to much classical and current work in physical science. The most significant aspect of these tie-ins is their potential for making substantial contributions to the functional needs of the applications areas while stimulating significant questions of basic physics. For this to be possible, it is necessary that the most relevant areas of physics be identified in such a manner as to make clear their re levance for aerosol-related studies and vice versa.

Book Aerosols and Climate

    Book Details:
  • Author : Ken S. Carslaw
  • Publisher : Elsevier
  • Release : 2022-08-11
  • ISBN : 0128197668
  • Pages : 854 pages

Download or read book Aerosols and Climate written by Ken S. Carslaw and published by Elsevier. This book was released on 2022-08-11 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ever-diversifying field of aerosol effects on climate is comprehensively presented here, describing the strong connection between fundamental research and model applications in a way that will allow both experienced researchers and those new to the field to gain an understanding of a wide range of topics. The material is consistently presented at three levels for each topic: (i) an accessible "quick read" of the essentials, (ii) a more detailed description, and (iii) a section dedicated to how the processes are handled in models. The modelling section in each chapter summarizes the current level of knowledge and what the gaps in this understanding mean for the effects of aerosols on climate, enabling readers to quickly understand how new research fits into established knowledge. Definitions, case studies, reference data, and examples are included throughout. Aerosols and Climate is a vital resource for graduate students, postdoctoral researchers, senior researchers, and lecturers in departments of atmospheric science, meteorology, engineering, and environment. It will also be of interest to those working in operational centers and policy-facing organizations, providing strong reference material on the current state of knowledge. Includes a section in each chapter that focuses on the treatment of relevant aerosol processes in climate models Provides clear exposition of the challenges in understanding and reducing persistent gaps in knowledge and uncertainties in the field of aerosol-climate interaction, going beyond the fundamentals and existing knowledge Authored by experts in modeling and aerosol processes, analysis or observations to ensure accessibility and balance

Book Mixed Phase Clouds

    Book Details:
  • Author : Constantin Andronache
  • Publisher : Elsevier
  • Release : 2017-09-28
  • ISBN : 012810550X
  • Pages : 302 pages

Download or read book Mixed Phase Clouds written by Constantin Andronache and published by Elsevier. This book was released on 2017-09-28 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

Book On the Representation of Aerosol cloud Interactions in Atmospheric Models

Download or read book On the Representation of Aerosol cloud Interactions in Atmospheric Models written by Donifan Barahona and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Anthropogenic atmospheric aerosols (suspended particulate matter) can modify the radiative balance (and climate) of the Earth by altering the properties and global distribution of clouds. Current climate models however cannot adequately account for many important aspects of these aerosol-cloud interactions, ultimately leading to a large uncertainty in the estimation of the magnitude of the effect of aerosols on climate. This thesis focuses on the development of physically-based descriptions of aerosol-cloud processes in climate models that help to address some of such predictive uncertainty. It includes the formulation of a new analytical parameterization for the formation of ice clouds, and the inclusion of the effects of mixing and kinetic limitations in existing liquid cloud parameterizations. The parameterizations are analytical solutions to the cloud ice and water particle nucleation problem, developed within a framework that considers the mass and energy balances associated with the freezing and droplet activation of aerosol particles. The new frameworks explicitly account for the impact of cloud formation dynamics, the aerosol size and composition, and the dominant freezing mechanism (homogeneous vs. heterogeneous) on the ice crystal and droplet concentration and size distribution. Application of the new parameterizations is demonstrated in the NASA Global Modeling Initiative atmospheric and chemical and transport model to study the effect of aerosol emissions on the global distribution of ice crystal concentration, and, the effect of entrainment during cloud droplet activation on the global cloud radiative properties. The ice cloud formation framework is also used within a parcel ensemble model to understand the microphysical structure of cirrus clouds at very low temperature. The frameworks developed in this work provide an efficient, yet rigorous, representation of cloud formation processes from precursor aerosol. They are suitable for the study of the effect of anthropogenic aerosol emissions on cloud formation, and can contribute to the improvement of the predictive ability of atmospheric models and to the understanding of the impact of human activities on climate.

Book Opportunities to Improve Representation of Clouds and Aerosols in Climate Models with Classified Observing Systems

Download or read book Opportunities to Improve Representation of Clouds and Aerosols in Climate Models with Classified Observing Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2016-08-31 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most significant and uncertain aspects of climate change projections is the impact of aerosols on the climate system. Aerosols influence the climate indirectly by interacting with nearby clouds leading to small changes in cloud cover, thickness, and altitude, which significantly affect Earth's radiative balance. Advancements have been made in recent years on understanding the complex processes and atmospheric interactions involved when aerosols interact with surrounding clouds, but further progress has been hindered by limited observations. The National Academies of Sciences, Engineering, and Medicine organized a workshop to discuss the usefulness of the classified observing systems in advancing understanding of cloud and aerosol interactions. Because these systems were not developed with weather and climate modeling as a primary mission objective, many participants said it is necessary for scientists to find creative ways to utilize the data. The data from these systems have the potential to be useful in advancing understanding of cloud and aerosol interactions. This publication summarizes the presentations and discussions from the workshop.

Book Investigations of Cloud Altering Effects of Atmospheric Aerosols Using a New Mixed Eulerian Lagrangian Aerosol Model

Download or read book Investigations of Cloud Altering Effects of Atmospheric Aerosols Using a New Mixed Eulerian Lagrangian Aerosol Model written by Henry Donnan Steele and published by . This book was released on 2004 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud albedo, lifetime, and patterns which together are thought to exert a negative radiative forcing on the climate; these are the indirect effects of atmospheric aerosols. The specifics of the process by which aerosol particles seed cloud particles are complex and highly uncertain. The goal of this thesis is to refine understanding of the role of various aerosol types in determining cloud properties. We approach this goal by constructing a new highly detailed aerosol-cloud process model that is designed to simulate condensation upon complex aerosol populations. We use this model to investigate the microphysics of aerosol-cloud interactions, specifically considering the role of cloud dynamics and of the ubiquitous mixed soot / sulfate aerosols. We describe the Mixed Eulerian-Lagrangian Aerosol Model (MELAM). This new computer model of aerosol microphysics is specifically tailored to simulate condensation and activation as accurately as possible. It specifically calculates aerosol thermodynamics, condensation, coagulation, gas and aqueous phase chemistry, and dissolution. The model is able to consider inorganic aerosols and aerosols with both inorganics and insoluble cores; the specific chemical system to be considered is specified by the user in text input files. Aerosol particles may be represented using "sectional distributions" or using a "representative sample" distribution which tracks individual particles. We also develop a constant updraft speed, adiabatic parcel model and a variable updraft speed, episodically entraining parcel model to provide boundary conditions to MELAM and allow simulations of aerosol activation in cloud updrafts. Using MELAM and the parcel models, we demonstrate that aerosol activation depends on the composition and size distribution of the sub-cloud aerosol population, on the updraft speed through a parcel's lifting condensation level, on the vertical profile of the updraft speed, and on entrainment. We use a convective parameterization that was developed for use in global or regional models to drive the episodically entraining, variable updraft speed parcel model. Ultimately, reducing the uncertainty of the global impact of the indirect effects of aerosols will depend on successfully linking cloud parameterizations to models of aerosol activation; our work represents a step in that direction. We also consider the activation of mixed soot / sulfate particles in cloud updrafts. We constrain for the first time a model of condensation onto these mixed particles that incorporates the contact angle of the soot / solution interface and the size of the soot core. We find that as soot ages and its contact angle with water decreases, mixed soot / sulfate aerosols activate more readily than the equivalent sulfate aerosols that do not have soot inclusions. We use data from the Aerosol Characterization Experiments (ACE) 1 and 2, and from the Indian Ocean Experiment (INDOEX) to define representative aerosol distributions for clean, polluted, and very polluted marine environments. Using these distributions, we argue that the trace levels of soot observed in clean marine environments do not substantially impact aerosol activation, while the presence of soot significantly increases the number of aerosol that activate in polluted areas.

Book Aerosol Cloud Precipitation Interactions in Moist Orographic Flows

Download or read book Aerosol Cloud Precipitation Interactions in Moist Orographic Flows written by Andreas Mühlbauer and published by Sudwestdeutscher Verlag Fur Hochschulschriften AG. This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosols are ubiquitous in the Earth's atmosphere and influence the climate system through their interactions with clouds and radiation. With their ability to serve as cloud condensation nuclei and ice nuclei aerosols influence microphysical processes in clouds thereby potentially affecting precipitation. In this book the possible effects of aerosols on orographic precipitation are investigated with a numerical model.

Book A Synthesis of Observations of Aerosol cloud Interactions Over the Pristine  Biologically Active Southern Ocean and the Implications for Global Climate Model Predictions

Download or read book A Synthesis of Observations of Aerosol cloud Interactions Over the Pristine Biologically Active Southern Ocean and the Implications for Global Climate Model Predictions written by Isabel Louise McCoy and published by . This book was released on 2020 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: The change in planetary albedo due to aerosol-cloud interactions (aci) during the industrial era is the leading source of uncertainty in inferring Earth's climate sensitivity to increased greenhouse gases from the historical record. Examining pristine environments such as the Southern Ocean (SO) helps us to understand the pre-industrial (PI) state and constrain radiative forcing associated with aci (RFaci). Cloud droplet number concentration (Nd) is a key aci indicator variable. Using global climate models (GCMs), this study finds that the hemispheric contrast in Nd of liquid clouds between the pristine SO and the polluted Northern Hemisphere observed in the present-day (PD) can be used as a proxy for the increase in Nd from the PI. The hemispheric difference constraint and MODIS satellite observations suggest that PI Nd may have been higher than previously thought and provide an estimate of RFaci between -1.2 and -0.6 Wm-2. Southern Ocean liquid clouds can reach Nd levels comparable to the polluted outflows of East Asia and the United States despite persistent precipitation depletion associated with mid-latitude storm systems. This high Nd in one of the most pristine regions on Earth motivates further investigation of the mechanisms driving Nd in the real world and better inclusion of the mechanisms in models. In this study, aerosol and cloud microphysical data from the 2018 Southern Ocean Cloud Radiation Aerosol Transport Experimental Study (SOCRATES) aircraft campaign are used to identify a novel and potentially important mechanism missing or poorly represented in models: production of new particles through synoptic uplift. The small, Aitken mode particles produced in this process dominate the free tropospheric atmosphere in the summertime SO. We find it is likely that entrainment of free tropospheric Aitken aerosols is a leading contributor to sub-cloud cloud condensation nuclei and thus may be a key control on Nd. The free tropospheric Aitken reservoir may maintain the persistently high Nd observed across the SO against precipitation depletion. Finally, our observational comparisons with nudged Community Atmosphere Model (CAM6) hindcasts highlight large aerosol number and composition discrepancies that may significantly and negatively impact the ability of current climate models to capture aci in pristine, PI environments.

Book Clouds and Their Climatic Impact

Download or read book Clouds and Their Climatic Impact written by Sylvia Sullivan and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds and Their Climatic Impacts Clouds are an influential and complex element of Earth’s climate system. They evolve rapidly in time and exist over small spatial scales, but also affect global radiative balance and large-scale circulations. With more powerful models and extensive observations now at our disposal, the climate impact of clouds is receiving ever more research attention. Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation presents an overview of our current understanding on various types of clouds and cloud systems and their multifaceted role in the radiative budget, circulation patterns, and rainfall. Volume highlights include: Interactions of aerosol with both liquid and ice clouds Surface and atmospheric cloud radiative feedbacks and effects Arctic, extratropical, and tropical clouds Cloud-circulation coupling at global, meso, and micro scales Precipitation efficiency, phase, and measurements The role of machine learning in understanding clouds and climate The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Book Atmospheric Aerosols

    Book Details:
  • Author : Olivier Boucher
  • Publisher : Springer
  • Release : 2015-05-18
  • ISBN : 9401796491
  • Pages : 322 pages

Download or read book Atmospheric Aerosols written by Olivier Boucher and published by Springer. This book was released on 2015-05-18 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aerosol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.

Book Remote Sensing of Aerosols  Clouds  and Precipitation

Download or read book Remote Sensing of Aerosols Clouds and Precipitation written by Tanvir Islam and published by Elsevier. This book was released on 2017-10-18 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. Presents new approaches in the field, along with further research opportunities, based on the latest satellite data Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field

Book Cloud Dynamics

    Book Details:
  • Author : Robert A. Houze Jr.
  • Publisher : Elsevier
  • Release : 1994-06-28
  • ISBN : 0080502105
  • Pages : 605 pages

Download or read book Cloud Dynamics written by Robert A. Houze Jr. and published by Elsevier. This book was released on 1994-06-28 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds play a critical role in the Earth's climate, general atmospheric circulation, and global water balance. Clouds are essential elements in mesoscale meteorology, atmospheric chemistry, air pollution, atmosphericradiation, and weather forecasting, and thus must be understood by any student or researcher in the atmospheric sciences. Cloud Dynamics provides a skillful and comprehensive examination of the nature of clouds--what they look like and why, how scientists observe them, and the basic dynamics and physics that underlie them. The book describes the mechanics governing each type of cloud that occurs in Earth's atmosphere, and the organization of various types of clouds in larger weather systems such as fronts, thunderstorms, and hurricanes.This book is aimed specifically at graduate students, advanced undergraduates, practicing researchers either already in atmospheric science or moving in from a related scientific field, and operational meteorologists. Some prior knowledge of atmospheric dynamics and physics is helpful, but a thorough overview of the necessary prerequisites is supplied. Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones Presents a photographic guide, presented in the first chapter, linking the examination of each type of cloud with an image to enhance visual retention and understanding Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth Integrates the latest field observations, numerical model simulations, and theory Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level

Book Aerosol cloud radiation Interaction Studies with GEOS 4 Model and Comparison with Observations

Download or read book Aerosol cloud radiation Interaction Studies with GEOS 4 Model and Comparison with Observations written by Partha Sarathi Bhattacharjee and published by . This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing human population and rapid urbanization in the last two decades have caused a sharp rise in anthropogenic aerosols particularly over South and East Asia. Numerous studies have shown that aerosols play an important role in climate change through their interaction with the global water and energy cycles. Thus Aerosol-cloud-radiation-monsoon interaction related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. General circulation models (GCMs) are an important tool for understanding the climate response to changes in the amounts and composition of aerosols due to evolving use of fossil and biomass fuels. This dissertation attempt to get an insight into the aerosol-cloud interaction and study impacts of aerosol forcing, with particular emphasis on the interaction of aerosol with monsoon water cycle. NASA Goddard Earth Observing System (GEOS) version 4 General Circulation Model (called GEOS4-GCM) with moist convection of Relaxed Arakawa-Schubert Scheme (McRAS) clouds and state-of-the-art parameterization of cloud microphysical process is used this study. A Single Column version (SCM) of the model is used to evaluate various parameterization schemes by comparing against in-situ and satellite observations. The model simulated realistic annual mean and annual cycles of cloud water, cloud optical thickness, cloud drop number concentration and effective radius without showing any systematic biases. GCM version of the model is used to study aerosol induced anomalies during summer months (June-August) particularly focusing over Indian monsoon. The individual aerosol effects (direct and indirect) and their combination show different impacts on radiation as well as on cloud microphysics, precipitation and circulation. However, complexities of nucleation of ice clouds in the model result not enough aerosols were acting as ice nuclei, which led to incomplete understanding of indirect effect in the atmosphere.

Book Analysis of the Aerosol radiation cloud Interactions Through the Use of Regional Climate chemistry Coupled Models

Download or read book Analysis of the Aerosol radiation cloud Interactions Through the Use of Regional Climate chemistry Coupled Models written by Rocío Baró Esteban and published by . This book was released on 2018 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The response of the climate systems to aerosols and their effect on the radiative budget of the Earth is the most uncertain climate feedback and one of the key topics in climate change mitigation. Air quality-climate studies (AQCI) are a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models are in demand. The main objective of the present Thesis is the characterization of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the aerosol direct and indirect radiative effects caused by aerosols over Europe, employing an ensemble of fully-coupled climate and chemistry model simulations. The first topic covered deals with the microphysics parameterization configuration of an online-coupled model. The differences when using two microphysics schemes within the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model are analyzed. The evaluated simulations come from the Air quality Model Evaluation International Initiative (AQMEII) Phase 2. The impact on several variables is estimated when selecting Morrison vs. Lin microphysics. The results showed smaller and more numerous cloud droplets simulated with the Morrison and therefore this scheme is more effective in scattering shortwave radiation. Also, the impact of biomass burning (BB) aerosols on surface winds during the Russian heat wave and wildfires episode is studied. The methodology consists of three WRF-Chem simulations over Europe, run under the context of EuMetChem COST Action ES1004, differing in the inclusion (or not) of aerosol-radiation (ARI) and aerosol-cloud interactions (ACI). These aerosols can affect surface winds where emission sources are located and further from the release areas. Local winds decrease due to a reduction of shortwave radiation at the ground, which leads to decreases in 2-m temperature. Atmospheric stability increases when considering aerosol feedbacks, inducing a lower planetary boundary layer height. This Dissertation also investigates the ability of an ensemble of simulations to elucidate the aerosol-radiation-cloud interactions. An assessment of whether the inclusion of atmospheric aerosol radiative feedbacks during two aerosol case studies of an ensemble of on-line coupled models improves the simulation results for maximum, mean and minimum 2-m temperature is done. The simulations (COST Action ES1004) are evaluated against observational data from E-OBS database. In both episodes, a general underestimation of the studied variables is found, being most noticeable in maximum temperature. The biases are improved when including ARI or ARI+ACI in the dust case. Although the ensemble does not outperform the individual models (in general), its improvements when including ARI+ARI are more remarkable. Last, an improvement of the spatio-temporal variability and correlation coefficients when aerosol radiative effects are included is found. Finally, the representation of the ACI in regional-scale integrated models when simulating the climate-chemistry-cloud-radiation system is analyzed. It complements the temperature analyses. The evaluated simulations are run in the context of AQMEII Phase 2 and include the ARI+ACI interactions. Simulations are evaluated against the (ESA) Cloud_cci data. Results show an underestimation(overestimation) of cloud fraction (CFR) over land(ocean) areas, which could be related to satellite retrieval missing thin clouds. Lower bias and mean absolute error (MAE) are found in the ensemble Cloud optical depth (COD) and cloud liquid ice path (CIP) are generally underestimated. The differences are related to microphysics. The development of this Thesis has contributed to the state of the art in AQCI studies. Although including aerosol feedbacks does not modify the bias, the spatio-temporal variability and correlation coefficients are improved.