Download or read book Techniques In Microscopy For Biomedical Applications written by Terje Dokland and published by World Scientific Publishing Company. This book was released on 2006-09-28 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume of the series Manuals in Biomedical Research, this book is aimed to be both a concise introduction to the diverse field of microscopy and a practical guide those who require the use of microscopic for methods in their research. It provides young as well as experienced scientists a state-of-the-art multidisciplinary overview of microscopic techniques, covering all the major microscopy fields in biomedical sciences and showing their application in evaluating samples ranging from molecules to cells and tissues.Microscopy has revolutionized our understanding of biological events. Within the last two decades, microscopic techniques have provided insights into the dynamics of biological processes that regulate such events. Biological discovery, to a large extent, depends on advances in imaging techniques and various microscopic techniques have emerged as central and indispensable tools in the biomedical sciences.The four authors bring with them extensive experiences spanning across disciplines such as Microbiology, Molecular and Cell Biology, Tissue Engineering, Biomedical and Regenerative Medicine and so forth, reinforcing the fact that microscopy has proven useful in countless investigations into the mysteries of life.
Download or read book Scanning Electron Microscopy for the Life Sciences written by Heide Schatten and published by Cambridge University Press. This book was released on 2013 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to modern scanning electron microscopy instrumentation, methodology and techniques, highlighting novel applications to cell and molecular biology.
Download or read book Advanced Techniques in Biological Electron Microscopy written by J.K. Koehler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen a remarkable increase in the use of electron microscopy as a researm tool in biology and medicine. Thus, most institu tions of higher learning now boast several electron optical laboratories having various levels of sophistication. Training in the routine use of elec tron optical equipment and interpretation of results is no longer restricted to a few prestigious centers. On the other hand, temniques utilized by researm workers in the ultrastructural domain have become extremely diverse and complex. Although a large number of quite excellent volumes of electron microscopic temnique are now dedicated to the basic elements available whim allow the novice to acquire a reasonable introduction to the field, relatively few books have been devoted to a discussion of more ad vanced temnical aspects of the art. It was with this view that the present volume was conceived as a handy reference for workers already having some background in the field, as an information source for those wishing to shift efforts into more promising temniques, or for use as an advanced course or seminar guide. Subject matter has been mosen particularly on the basis of pertinence to present researm activities in biological electron microscopy and emphasis has been given those areas whim seem destined to greatly expand in useful ness in the near future.
Download or read book Biological Field Emission Scanning Electron Microscopy 2 Volume Set written by Roland A. Fleck and published by John Wiley & Sons. This book was released on 2019-04-29 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: The go‐to resource for microscopists on biological applications of field emission gun scanning electron microscopy (FEGSEM) The evolution of scanning electron microscopy technologies and capability over the past few years has revolutionized the biological imaging capabilities of the microscope—giving it the capability to examine surface structures of cellular membranes to reveal the organization of individual proteins across a membrane bilayer and the arrangement of cell cytoskeleton at a nm scale. Most notable are their improvements for field emission scanning electron microscopy (FEGSEM), which when combined with cryo-preparation techniques, has provided insight into a wide range of biological questions including the functionality of bacteria and viruses. This full-colour, must-have book for microscopists traces the development of the biological field emission scanning electron microscopy (FEGSEM) and highlights its current value in biological research as well as its future worth. Biological Field Emission Scanning Electron Microscopy highlights the present capability of the technique and informs the wider biological science community of its application in basic biological research. Starting with the theory and history of FEGSEM, the book offers chapters covering: operation (strengths and weakness, sample selection, handling, limitations, and preparation); Commercial developments and principals from the major FEGSEM manufacturers (Thermo Scientific, JEOL, HITACHI, ZEISS, Tescan); technical developments essential to bioFEGSEM; cryobio FEGSEM; cryo-FIB; FEGSEM digital-tomography; array tomography; public health research; mammalian cells and tissues; digital challenges (image collection, storage, and automated data analysis); and more. Examines the creation of the biological field emission gun scanning electron microscopy (FEGSEM) and discusses its benefits to the biological research community and future value Provides insight into the design and development philosophy behind current instrument manufacturers Covers sample handling, applications, and key supporting techniques Focuses on the biological applications of field emission gun scanning electron microscopy (FEGSEM), covering both plant and animal research Presented in full colour An important part of the Wiley-Royal Microscopical Series, Biological Field Emission Scanning Electron Microscopy is an ideal general resource for experienced academic and industrial users of electron microscopy—specifically, those with a need to understand the application, limitations, and strengths of FEGSEM.
Download or read book Advanced Materials for Biomedical Applications written by Ashwani Kumar and published by CRC Press. This book was released on 2022-12-13 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text discusses synthesis, processing, design, simulation and characterization of biomaterials for biomedical applications. It synergizes exploration related to various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling. It further presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field. It will serve as an ideal reference text for senior undergraduate and graduate students, and academic researchers in fields including biomedical engineering, mechanical engineering, materials science, ergonomics, and human factors. The book: Employs a problem-solution approach, where, in each chapter, a specific biomedical engineering problem is raised and its numerical, and experimental solutions are presented Covers recent developments in biomaterials such as OPMF/KGG bio composites, PEEK-based biomaterials, PF/KGG biocomposites, oil palm mesocarp Fibre/KGG biocomposites, and polymeric resorbable materials for orthopedic, dentistry and shoulder arthroplasty applications Discusses mechanical performance and corrosive analysis of biomaterials for biomedical applications in detail Presents advanced integrated design and nonlinear simulation problems occurring in the biomedical engineering field Presents biodegradable polymers for various biomedical applications over the last decade owing to their non-corrosion in the body, biocompatibility and superior strength in growing state Synergizes exploration related to the various properties and functionalities in the biomedical field through extensive theoretical and experimental modeling
Download or read book Scanning Electron Microscopy in BIOLOGY written by R.G. Kessel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the continuing quest to explore structure and to relate struc tural organization to functional significance, the scientist has developed a vast array of microscopes. The scanning electron microscope (SEM) represents a recent and important advance in the development of useful tools for investigating the structural organization of matter. Recent progress in both technology and methodology has resulted in numerous biological publications in which the SEM has been utilized exclusively or in connection with other types of microscopes to reveal surface as well as intracellular details in plant and animal tissues and organs. Because of the resolution and depth of focus presented in the SEM photograph when compared, for example, with that in the light microscope photographs, images recorded with the SEM have widely circulated in newspapers, periodicals and scientific journals in recent times. Considering the utility and present status of scanning electron microscopy, it seemed to us to be a particularly appropriate time to assemble a text-atlas dealing with biological applications of scanning electron microscopy so that such information might be presented to the student and to others not yet familiar with its capabilities in teaching and research. The major goal of this book, therefore, has been to assemble material that would be useful to those students beginning their study of botany or zoo logy, as well as to beginning medical students and students in advanced biology courses.
Download or read book Microcircuit Reliability Bibliography written by and published by . This book was released on 1974 with total page 888 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advanced Materials for Biomedical Applications written by Vivek Sheel Rajput and published by Springer Nature. This book was released on 2023-12-21 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an insight into the basic fundamentals of the biomaterials used for the biomedical applications, their development and processing techniques. Advanced materials are significantly utilized for the biomedical applications ranging from dental devices to cancer treatment owing to their higher biocompatibility and better interaction with tissues. This book covers the various topics that include basic biocompatibility phenomena, insight to materials science, class of different advanced materials as a biomaterials, development and processing techniques, design and analysis of the developed advanced materials, investigation of its properties and major applications. Recent information regarding the development techniques and methods for improving the properties of the advanced materials in the field of biomedical applications is highlighted in detail. The textbook offers clear explanation of the text in the chapters with self-explanatory figures and tables. It demonstrates the novel methods, opportunities and ideas for developing biomaterials in the field of biomedical applications. It also includes critical review study of the developed advanced materials for biomedical applications in a new summarized form. The inclusion of the discussions on hybrid polymer-based composites and self-healing composite materials offers a special feature in the textbook. It features a thorough overview of the simulation aspect in the biomedical applications. The book features at least 50% of its references from last three–four years’ work in the field of biomaterials and biomedical. The book content adds to the redundancy in the literature work related to biomedical and biomaterials. This book is a valuable resource for academicians, students and scholars from science and engineering background having interest in biomaterials. It is helpful to the biomedical engineering group especially in countries or location where they don’t have access to the major journals.
Download or read book Scanning Electron Microscopy written by and published by . This book was released on 1985 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vols. for 1968-77 include the proceedings of the annual Scanning Electron Microscope Symposium, sponsored by the IIT Research Institute, and other workshops.
Download or read book Biological Low Voltage Scanning Electron Microscopy written by James Pawley and published by Springer Science & Business Media. This book was released on 2007-12-03 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Major improvements in instrumentation and specimen preparation have brought SEM to the fore as a biological imaging technique. Although this imaging technique has undergone tremendous developments, it is still poorly represented in the literature, limited to journal articles and chapters in books. This comprehensive volume is dedicated to the theory and practical applications of FESEM in biological samples. It provides a comprehensive explanation of instrumentation, applications, and protocols, and is intended to teach the reader how to operate such microscopes to obtain the best quality images.
Download or read book Advance of Polymers Applied to Biomedical Applications Cell Scaffolds written by Insung S. Choi and published by MDPI. This book was released on 2018-09-04 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Advance of Polymers Applied to Biomedical Applications: Cell Scaffolds" that was published in Polymers
Download or read book Scanning Microscopy for Nanotechnology written by Weilie Zhou and published by Springer Science & Business Media. This book was released on 2007-03-09 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents scanning electron microscopy (SEM) fundamentals and applications for nanotechnology. It includes integrated fabrication techniques using the SEM, such as e-beam and FIB, and it covers in-situ nanomanipulation of materials. The book is written by international experts from the top nano-research groups that specialize in nanomaterials characterization. The book will appeal to nanomaterials researchers, and to SEM development specialists.
Download or read book Atomic Force Microscopy written by Pier Carlo Braga and published by Springer Science & Business Media. This book was released on 2008-02-02 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The natural, biological, medical, and related sciences would not be what they are today without the microscope. After the introduction of the optical microscope, a second breakthrough in morphostructural surface analysis occurred in the 1940s with the development of the scanning electron microscope (SEM), which, instead of light (i. e. , photons) and glass lenses, uses electrons and electromagnetic lenses (magnetic coils). Optical and scanning (or transmission) electron microscopes are called “far-field microscopes” because of the long distance between the sample and the point at which the image is obtained in comparison with the wavelengths of the photons or electrons involved. In this case, the image is a diffraction pattern and its resolution is wavelength limited. In 1986, a completely new type of microscopy was proposed, which, without the use of lenses, photons, or electrons, directly explores the sample surface by means of mechanical scanning, thus opening up unexpected possibilities for the morphostructural and mechanical analysis of biological specimens. These new scanning probe microscopes are based on the concept of near-field microscopy, which overcomes the problem of the limited diffraction-related resolution inherent in conventional microscopes. Located in the immediate vicinity of the sample itself (usually within a few nanometers), the probe records the intensity, rather than the interference signal, thus significantly improving resolution. Since the most we- known microscopes of this type operate using atomic forces, they are frequently referred to as atomic force microscopes (AFMs).
Download or read book Physical Principles of Electron Microscopy written by Ray Egerton and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning and stationary-beam electron microscopes are indispensable tools for both research and routine evaluation in materials science, the semiconductor industry, nanotechnology and the biological, forensic, and medical sciences. This book introduces current theory and practice of electron microscopy, primarily for undergraduates who need to understand how the principles of physics apply in an area of technology that has contributed greatly to our understanding of life processes and "inner space." Physical Principles of Electron Microscopy will appeal to technologists who use electron microscopes and to graduate students, university teachers and researchers who need a concise reference on the basic principles of microscopy.
Download or read book Advances in Polymeric Nanomaterials for Biomedical Applications written by Anil Kumar Bajpai and published by Elsevier. This book was released on 2021-03-19 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Polymeric Nanomaterials for Biomedical Applications examines advanced polymer synthetic strategies for developing novel biomaterials for use in medicine. With a strong focus on fundamentals and structure, the authors also explore their fabrication, along with their current and potential biomedical applications. The book begins with a look at the fundamentals of polymeric nanomaterials and their properties and then discusses the design of biomaterials and their applications in drug delivery. Further chapters explore important applications, such as imaging and regenerative medicine, including current challenges and future trends. This valuable resource is especially useful for materials and polymer scientists, and bioengineers wishing to broaden their knowledge of polymeric nanobiomaterials. Covers the complete spectrum of polymer nanomaterials used in biomedical applications Includes various applications, such as drug delivery, gene delivery, bio-imaging, tissue engineering and regenerative medicine, anti-microbial agents, and neuroscience Explores fundamental correlations between structures, properties and applications, as well as synthetic strategies for polymer nanomaterials
Download or read book Proceedings in Print written by and published by . This book was released on 1977 with total page 956 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Springer Handbook of Microscopy written by Peter W. Hawkes and published by Springer Nature. This book was released on 2019-11-02 with total page 1561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.