EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Additive Manufacturing  Preparing for the Reality of Science Fiction  Emerging Technologies and Homeland Security Public Policy  3D Printers and Autonomous Vehicles  Unmanned Aerial Systems  Drones

Download or read book Additive Manufacturing Preparing for the Reality of Science Fiction Emerging Technologies and Homeland Security Public Policy 3D Printers and Autonomous Vehicles Unmanned Aerial Systems Drones written by U. S. Military and published by . This book was released on 2016-12-20 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, policymakers have had difficulty addressing issues raised by emerging technologies. Whether it is inadequate legislation due to a general lack of awareness, or overregulation from a perceived threat, emerging technologies seem to repeatedly confuse those responsible for ensuring their safe incorporation into society. Despite decades of experience with similar issues, this trend continues to this day. What lessons can be drawn from different approaches to policy development for other emerging technologies to help policymakers avoid these failures for additive manufacturing technologies?A structured focus comparison of three emerging technologies, unmanned aerial systems, autonomous vehicles, and additive manufacturing, revealed characteristics of emerging technologies--such as a low price point for market entry and rapid evolution-- that tend to surprise policymakers.This study recommends organizations make a concerted effort to engage early and often in the policy development process, and that they carefully consider each stakeholder's level of involvement. It is also recommended that the Department of Homeland Security leverage existing mechanisms, such as the Centers of Excellence partnerships and the Strategic Foresight Initiative, to engage nontraditional partners in addressing issues raised by additive manufacturing technologies.To appropriately address the question, this research used a structured, focused comparison to examine select elements of unmanned aerial systems (UASs), autonomous vehicles, and additive manufacturing systems. These technologies were selected based on availability of academic research as well as pertinence in the field of homeland security. To strengthen the approach to this qualitative study, the methodology focused on reducing the number of variables considered in each selected technology, and choosing emerging technologies that possessed similar conditions.This research revealed that the unique, individual characteristics of each emerging technology are the most significant factors that can lead to uninformed or reactionary public policy approaches. The most significant characteristics revealed by this study were:timeframe for evolution of technology; price point for entry into the market; range of impacted stakeholders.This research showed that quickly evolving technologies with low price points for entry into the market and wide ranges of interested or impacted stakeholders are the most likely to surprise legislators. UASs and additive manufacturing technologies fit this description and, to date, have not been adequately addressed by policymakers.From these findings, the researcher developed recommendations at two levels: strategic and tactical. The strategic-level recommendations focus on general lessons learned from historical policy development examples focused on emerging technologies. These are high level, generalizable, and suitable for any organization interested in working with emerging technologies. The tactical-level recommendations are focused on existing mechanisms within the Department of Homeland Security (DHS) that can be leveraged to specifically address potential policy questions raised by the recent advancements in additive manufacturing processes. These recommendations aim to be realistic and executable, with consideration given to the continued strain on resources available for new initiatives.

Book Additive Manufacturing  3D Printing   Design

Download or read book Additive Manufacturing 3D Printing Design written by Dr. Sabrie Soloman and published by Dr. Sabrie Soloman. This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive Manufacturing 3D Printing & Design The 4th Revolution Not ever previously consumer has had a technology where we so easily interpret the concepts into a touchable object with little concern to the machinery or talents available. If “seeing is believing!-” 3D printing technology is the perfect object image to see, touch, and feel! It is the wings to lift the well sought product, after laboring and toiling in several design iterations to bring the novel product to be a successful implementation. Now it is promising to become familiar with the product prototype and physically test it to find the flaws in the design. If a flaw is detected, the designer can easily modify the CAD file and print out a new unit. On Demand Custom Part Additive manufacturing has become a mainstream manufacturing process. It builds up parts by adding materials one layer at a time based on a computerized 3D solid model. It does not require the use of fixtures, cutting tools, coolants, and other auxiliary resources. It allows design optimization and the producing of customized parts on-demand. Its advantages over conventional manufacturing have captivated the imagination of the public, reflected in recent corporate implementations and in many academic publications that call additive manufacturing the “fourth industrial revolution.” Digital Model Layer by Layer 3D additive manufacturing is a process tailored for making three-dimensional objects of varieties of different shapes created from digital models. The objects are produced using an additive process, where successive layers of materials are deposited down in different shapes. The 3D Additive Manufacturing is considered diverse from traditional machining techniques, which depends primarily on the removal of material by cutting or drilling. The removal of material is referred to as a “subtractive process.” In a fast-paced, pressure-filled business atmosphere, it is clear that decreasing delivery by days is exceptionally valuable. Digital Manufacturing 3D printing - additive manufacturing, produces 3D solid items from a digital computer file. The printing occurs in an additive process, where a solid object is generated through the consecutive layering of material. There are an extensive variety of materials to select from countless lists of polymers and metals. The process begins with the generation of a 3D digital file such as CAD file. The 3D digital file is then directed to a 3D printer for printing using a simple print command. Freed of the constraints of traditional factories, additive manufacturing allows designers to produce parts that were previously considered far too complex to make economically. Engineers and Biologists are finding practical applications to use 3D additive manufacturing. It permits novel designs to become matchless rare-products that were not likely with preceding manufacturing methods. It is poised to transform medicine and biology with bio-manufacturing. This technology has the possibility to upsurge the well-being of a nation’s citizens. Additive manufacturing may progress the worldwide resources and energy effectiveness in ground, sea and air. This 3D Printing & Design book will enable you to develop and 3D print your own unique object using myriads of worldwide materials. Galilee Galileo & Isaac Newton Galileo Galilei and Isaac Newton have changed our understanding of not only our own solar system, but also the whole universe through the invention of their telescope. The telescope steered a novel and captivating scientific discipline of “astronomy” —observing and studying the planets, stars, and other objects in the universe. The Nebula, for example, could not be observed prior to the invention of the telescope. No one could have estimated how many planets were in our solar system. Thanks to the technology of the telescope, the knowledge of universe was revealed. Thanks to a simple piece of glass made of silica, and to a simple lens made of glass. Similarly, 3D printing technology is a simple approach to open a flood gate to our Fourth Industrial Revolution. One-off Prototype One-off prototypes can be hideously expensive to produce, but a 3D printer can bring down the cost by a sizable margin. Many consumers goods, mechanical parts, aerospace, automobiles, robots, shoes, fashions, architects' models, dentures, hearing aids, cell biology, now appear in a 3D-printed form for appraisal by engineers, stylists, biologist, and clients before obtaining the final approval. Any changes can be swiftly reprinted in a few hours or overnight, whereas waiting for a new prototype to emerge from a machine shop could take weeks, and sometimes months. Some designers are already printing ready-to-wear shoes, dresses, and prosthetics, from metals, plastic and nylon materials. 3D printing’s utmost advantage is making discrete parts rapidly, autonomous of design complications. That speed delivers rapid reaction on the first prototype, and the capability to modify the design and speedily re-manufacture the part. As an alternative of waiting days or weeks for a CNC-machined prototype, a 3D printer can manufacture the part overnight. Development Cycle The 3D printer provides the additional advantage of removing many overhead manufacturing costs and time-delay by 3D printing parts that withstand a machine shop environment. Several tooling, fixtures, and work-holding jaws may be easily developed and 3D printed without extensive lead time and overhead cost. Its speed and quality shorten the product development cycle, permitting manufacturing aesthetically appealing, and high-performance parts in less than a day. Many instances testify that 3D printers offer substantial flexibility to yield parts with the adequate tensile strength and quality, desired to prosper the technology at a reasonable speed and cost. The rewards of applying 3D printing are substantial, as 3D printing permits product development teams to effortlessly, rapidly, and cost effectively yield models, prototypes, and patterns. Parts can be manufactured in hours or days rather than weeks. Nano-bots 3D additive manufacturing may be the only known method for constructing nanobots, which will overcome the speed disadvantage of 3D additive printing, thereby enabling the technology to be widely deployed in every manufacturing aspect. If millions of nanobots worked together, they might be able to do amazing manufacturing takes. Microscopic Surgery Scientists and researchers constructed teams of nanobots able to perform microscopic surgery inside a patient’s body. Some groups of nanobots have been programmed to build objects by arranging atoms precisely so there would be no waste. Other nanobots might even be designed to build more nanobots to replace ones that wear out! Compared to other areas of science like manufacturing and biology, nanotechnology is a very new area of 3D printing research. Working with microns and nanometers is still a very slow and difficult task. Carbon Fiber Also, material scientists and metallurgists are constantly providing engineers, and manufacturers with new and superior materials to make parts in the most economical and effective means. Carbon-fiber composites, for instance, are replacing steel and aluminum in products ranging from simple mountain bikes to sophisticated airliners. Sometimes the materials are farmed, cultivated and may be grown from biological substances and from micro-organisms that have been genetically engineered for the task of fabricating useful parts. Facing the benefits of the current evolution of 3D printing technology, companies from all parts in the supply chain are experiencing the opportunities and threatens it may bring. First, to traditional logistic companies, 3D printing is causing a decline in the cargo industry, reducing the demand for long-distance transportation such as air, sea and rail freight industries. The logistic companies which did not realize the current evolution may not adapt rapidly enough to the new situation. As every coin has two sides, with 3D Printing, logistics companies could also become able to act as the manufacturers. The ability to produce highly complex designs with powerful computer software and turn them into real objects with 3D printing is creating a new design language. 3D-printed items often have an organic, natural look. “Nature has come up with some very efficient designs, Figure 1.3. Often it is prudent to mimic them,” particularly in medical devices. By incorporating the fine, lattice-like internal structure of natural bone into a metal implant, for instance, the implant can be made lighter than a machined one without any loss of strength. It can integrate more easily with the patient's own bones and be grafted precisely to fit the intended patient. Surgeons printed a new titanium jaw for a woman suffering from a chronic bone infection. 3D additive manufacturing promises sizable savings in material costs. In the aerospace industry, metal parts are often machined from a solid billet of costly high-grade titanium. This constitutes 90% of material that is wasted. However, titanium powder can be used to print parts such as a bracket for an aircraft door or part of a satellite. These can be as strong as a machined part, but use only 10% of the raw material. A Boeing F-18 fighter contains a number of printed parts such as air ducts, reducing part weight by at least 30%. Remote Manufacturing 3D Printers Replicator can scan an object in one place while simultaneously communicating to another machine, locally or globally, developed to build a replica object. For example, urgently needed spares could be produced in remote places without having to ship the original object. Even parts that are no longer available could be replicated by scanning a broken item, repairing it virtually, and then printing a new one. It is likely digital libraries will appear online for parts and products that are no longer available. Just as the emergence of e-books means books may never go out of print, components could always remain available. Service mechanics could have portable 3D printers in their vans and hardware stores could offer part-printing services. DIY Market Some entrepreneurs already have desktop 3D printers at home. Industrial desktop 3D printing machines are creating an entirely new market. This market is made up of hobbyists, do-it-yourself enthusiasts, tinkerers, inventors, researchers, and entrepreneurs. Some 3D-printing systems can be built from kits and use open-source software. Machinists may be replaced someday by software technicians who service production machines. 3D printers would be invaluable in remote areas. Rather than waiting days for the correct tool to be delivered, you could instantly print the tool on the job. Printing Materials However, each method has its own benefits and downsides. Some 3D printer manufacturers consequently offer a choice between powder and polymer for the material from which the object is built. Some manufacturer use standard, off-the-shelf business paper as the build material to produce a durable prototype. Speed, cost of the 3D printer, cost of the printed prototype, and the cost of choice materials and color capabilities are the main considerations in selecting a 3D printing machine. SLA – DLP - FDM – SLS - SLM & EBM The expansive world of 3D printing machines has become a confusing place for beginners and professionals alike. The most well-known 3D printing techniques and types of 3D printing machines are stated below. The 3D printing technology is categorized according to the type of technology utilized. The categories are stated as follows: Stereolithography(SLA) Digital Light Processing(DLP) Fused deposition modeling (FDM) Selective Laser Sintering (SLS) Selective laser melting (SLM) Electronic Beam Melting (EBM) Laminated object manufacturing (LOM) Also, the book provides a detailed guide and optimum implementations to each of the stated 3D printing technology, the basic understanding of its operation, and the similarity as well as the dissimilarity functions of each printer. School Students, University undergraduates, and post graduate students will find the book of immense value to equip them not only with the fundamental in design and implementation but also will encourage them to acquire a system and practice creating their own innovative samples. Furthermore, professionals and educators will be well prepared to use the knowledge and the expertise to practice and advance the technology for the ultimate good of their respective organizations. Global Equal Standing Manufacturers large and small play a significant part in the any country’s economy. The U.S. economy; rendering to the United States Census Bureau, manufacturers are the nation’s fourth-largest employer, and ship several trillions of dollars in goods per annum. It may be a large automotive enterprise manufacturing vehicles or an institution with less than 50 employees. Manufacturers are vital to the country’s global success. However, many societies have misunderstandings about the manufacturing jobs are undesirable jobs and offers low-paying compensations. Other countries may be discouraged to compete against USA. Additive Manufacturing Technology – 3D Printing would level the manufacturing plane field, enabling all countries to globally stand on equal footing. Dr. Sabrie Soloman, Chairman & CEO 3D Printing & Design Not ever previously consumer has had a technology where we so easily interpret the concepts into a touchable object with little concern to the machinery or talents available. 3D Printing Technology builds up parts by adding materials one layer at a time based on a computerized 3D solid model. It allows design optimization and the producing of customized parts on-demand. Its advantages over conventional manufacturing have captivated the imagination of the public, reflected in recent corporate implementations and in many academic publications that call additive manufacturing the “Fourth Industrial Revolution.” 3D Printing produces 3D solid items from a digital computer file. The printing occurs in an additive process, where a solid object is generated through the consecutive layering of material. The process begins with the generation of a 3D digital file such as CAD file. The 3D digital file is then directed to a 3D Printer for printing using a simple print command. Freed of the constraints of traditional factories, additive manufacturing allows designers to produce parts that were previously considered far too complex to make economically. Engineers and Biologists are finding practical applications to use 3D additive manufacturing. It permits novel designs to become matchless rare-products that were not likely with preceding manufacturing methods. 3D Printing Technology is poised to transform medicine and biology with bio-manufacturing, and traditional manufacturing into 3D Printing. This technology has the possibility to upsurge the well-being of a nation’s citizens. Additive manufacturing may progress the worldwide resources and energy effectiveness in “Ground, Sea and Air.” This 3D Printing & Design book will enable you to develop and 3D Print your own unique object using myriads of available worldwide materials. One-off prototypes can be hideously expensive to produce, but a 3D Printer can bring down the cost by a sizable margin. Many consumers goods, mechanical parts, aerospace, automobiles, robots, shoes, fashions, architects' models, dentures, hearing aids, cell biology, now appear in a 3D-printed form for appraisal by engineers, stylists, biologist, and clients before obtaining the final approval. The 3D Printing Technology provides the additional advantage of removing many overhead manufacturing costs and time-delay. The rewards are substantial, as it permits product development teams effortlessly, rapidly and cost effectively yielding models, prototypes, and patterns to be manufactured in hours or days rather than weeks, or months.

Book Additive Manufacturing Handbook

Download or read book Additive Manufacturing Handbook written by Adedeji B. Badiru and published by CRC Press. This book was released on 2017-05-19 with total page 928 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical and practical interests in additive manufacturing (3D printing) are growing rapidly. Engineers and engineering companies now use 3D printing to make prototypes of products before going for full production. In an educational setting faculty, researchers, and students leverage 3D printing to enhance project-related products. Additive Manufacturing Handbook focuses on product design for the defense industry, which affects virtually every other industry. Thus, the handbook provides a wide range of benefits to all segments of business, industry, and government. Manufacturing has undergone a major advancement and technology shift in recent years.

Book Additive Manufacturing

Download or read book Additive Manufacturing written by T.S. Srivatsan and published by CRC Press. This book was released on 2015-09-25 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get Ready for the Future of Additive ManufacturingAdditive Manufacturing: Innovations, Advances, and Applications explores the emerging field of additive manufacturing (AM)-the use of 3D printing to make prototype parts on demand. Often referred to as the third industrial revolution, AM offers many advantages over traditional manufacturing. This pr

Book Additive Manufacturing Technologies

Download or read book Additive Manufacturing Technologies written by Ian Gibson and published by Springer. This book was released on 2014-11-26 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered

Book Additive Manufacturing Technologies

Download or read book Additive Manufacturing Technologies written by Ian Gibson and published by Springer Nature. This book was released on 2020-11-10 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook covers in detail digitally-driven methods for adding materials together to form parts. A conceptual overview of additive manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Well-established and emerging applications such as rapid prototyping, micro-scale manufacturing, medical applications, aerospace manufacturing, rapid tooling and direct digital manufacturing are also discussed. This book provides a comprehensive overview of additive manufacturing technologies as well as relevant supporting technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. Reflects recent developments and trends and adheres to the ASTM, SI and other standards; Includes chapters on topics that span the entire AM value chain, including process selection, software, post-processing, industrial drivers for AM, and more; Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.

Book Additive Manufacturing  AM

Download or read book Additive Manufacturing AM written by Albert Thornton and published by Nova Science Publishers. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The introduction of additive manufacturing or 3D printing has brought about a whole new dimension of possibilities in manufacturing technology. This book includes research on powder-bed electron beam additive manufacturing (EBAM) which has the potential to offer innovative solutions to many challenges facing the manufacturing industry. The feasibility of the use of a 3D printer to recreate patient-specific anatomical modelling (in this case, of the pelvic rim) are also examined. A discussion on why the use of this technology to customise implants, plates and the operative procedure to a patient's unique anatomy leads to improved outcomes is led by the authors. The third chapter deals with selective laser melting (SML) and presents a review regarding the state-of-the-art mechanical performance of the SML manufactured titanium and aluminium alloys (due to wide demand of light-weight parts in the aerospace and automotive industries). The authors of the fourth chapter discuss the feasibility of mobile additive manufacturing systems powered by photovoltaic modules for different applications. The book concludes with a review on functionally graded materials (FGM), which can be produced by laser metal deposition, which belongs to the class of additive manufacturing. LMD is capable of producing three dimensional (3D) parts directly from the 3D image by adding materials layer by layer. In this chapter, laser metal deposition of titanium alloy composite are described and also characterised.

Book Advances in Additive Manufacturing

Download or read book Advances in Additive Manufacturing written by Ajay Kumar and published by Elsevier. This book was released on 2022-11-24 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book is a compilation of scholarly articles on the latest developments in the field of additive manufacturing, discussing nature-inspired and artificial intelligence–aided additive manufactured processes for different materials including biomanufacturing, and their applications, as well as various methods to enhance the characteristics of the materials produced, the efficiency of the manufacturing process itself, as well as optimal ways to develop a product in minimum time. The book explores the advancements in additive manufacturing from prefabrication stage to final product, with real-time defect detection, control, and process efficiency improvement covered. This book will be a great resource for engineers, researchers, and academics involved in this revolutionary and unique field of manufacturing. Discusses modeling of additive manufacturing processes by artificial intelligence Looks at the optimization of designs, technologies, and material fabrication and the use of simulation in additive manufacturing Includes case studies and real-world industrial problems and solutions

Book Additive Manufacturing

    Book Details:
  • Author : Emrah Celik
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2020-07-06
  • ISBN : 1501510983
  • Pages : 187 pages

Download or read book Additive Manufacturing written by Emrah Celik and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-07-06 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers additive manufacturing of polymers, metals, ceramics, fiber reinforced polymer composites, energy harvesting materials, and biomaterials. Hybrid manufacturing is discussed. Topology optimization methodology is described and finite element software examples are provided. The book is ideal for graduate students and career starters in the industry.

Book Additive Manufacturing Technologies From an Optimization Perspective

Download or read book Additive Manufacturing Technologies From an Optimization Perspective written by Kumar, Kaushik and published by IGI Global. This book was released on 2019-06-28 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this technology-driven era, conventional manufacturing is increasingly at risk of reaching its limit, and a more design-driven manufacturing process, additive manufacturing, might just hold the key to innovation. Offering a higher degree of design freedom, the optimization and integration of functional features, and the manufacturing of small batch sizes, additive manufacturing is changing industry as we know it. Additive Manufacturing Technologies From an Optimization Perspective is a critical reference source that provides a unified platform for the dissemination of basic and applied knowledge about additive manufacturing. It carefully examines how additive manufacturing is increasingly being used in series production, giving those in the most varied sectors of industry the opportunity to create a distinctive profile for themselves based on new customer benefits, cost-saving potential, and the ability to meet sustainability goals. Highlighting topics such as bio-printing, tensile strength, and cell printing, this book is ideally designed for academicians, students, engineers, scientists, software developers, architects, entrepreneurs, and medical professionals interested in advancements in next-generation manufacturing.

Book Innovative Processes and Materials in Additive Manufacturing

Download or read book Innovative Processes and Materials in Additive Manufacturing written by Sunpreet Singh and published by Woodhead Publishing. This book was released on 2022-09-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Innovative Processes and Materials in Additive Manufacturing explains game-changing interdisciplinary applications of recent research breakthroughs in additive manufacturing technology. The number of research publications addressing additive manufacturing has soared in recent years as a range of disciplines explore the possibilities that this technology can provide. This book acts as a bridge between this high-level research and the large number of academics and practitioners looking to additive manufacturing for innovative solutions, providing them with practical and approachable information. Applications in aerospace, automotive, medical, construction, and food industries are addressed, featuring technical details that will help successful implementation. This unique book also provides broad coverage of the theory behind this emerging technology, including material development, as well as the technical details required for readers to investigate the novel applications of the involved methods for themselves. Includes case studies from the aerospace, construction and medical industries Features innovations in the integration of additive manufacturing processes with other manufacturing technologies Identifies exciting routes for future research and application areas of additive manufacturing

Book Additive Manufacturing in Multidisciplinary Cooperation and Production

Download or read book Additive Manufacturing in Multidisciplinary Cooperation and Production written by Igor Drstvensek and published by Springer Nature. This book was released on 2023-10-27 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book publishes the latest findings and ideas in the field of additive manufacturing presented by authors from prominent institutions around the world at the iCAT 2023 conference. The authors address various technological and medical aspects, ranging from materials science to the specific behaviour of the technology under different working conditions. The book is divided into four sections, three of which are dedicated to the purely technological aspects of additive manufacturing, covering metal processes, polymer processes and simulation. The fourth part of the book is dedicated to the medical applications of additive manufacturing, covering areas ranging from orthopaedic surgeries to materials used in medical AM.Overall, the book provides insight into the current state of the science and applications of additive manufacturing.

Book Additive Manufacturing

    Book Details:
  • Author : Steinar Westhrin Killi
  • Publisher : CRC Press
  • Release : 2017-09-07
  • ISBN : 1351767488
  • Pages : 308 pages

Download or read book Additive Manufacturing written by Steinar Westhrin Killi and published by CRC Press. This book was released on 2017-09-07 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive manufacturing has matured from rapid prototyping through the now popular and "maker"-oriented 3D printing, recently commercialized and marketed. The terms describing this technology have changed over time, from "rapid prototyping" to "rapid manufacturing" to "additive manufacturing," which reflects largely a focus on technology. This book discusses the uptake, use, and impact of the additive manufacturing and digital fabrication technology. It augments technical and business-oriented trends with those in product design and design studies. It includes a mix of disciplinary and transdisciplinary trends and is rich in case and design material. The chapters cover a range of design-centered views on additive manufacturing that are rarely addressed in the main conferences and publications, which are still mostly, and importantly, concerned with tools, technologies, and technical development. The chapters also reflect dialogues about transdisciplinarity and the inclusion of domains such as business and aesthetics, narrative, and technology critique. This is a great textbook for graduate students of design, engineering, computer science, marketing, and technology and also for those who are not students but are curious about and interested in what 3D printing really can be used for in the near future.

Book 3D Printing in Space

    Book Details:
  • Author : National Research Council (U.S.). Committee on Space-Based Additive Manufacturing
  • Publisher :
  • Release : 2014
  • ISBN : 9780309310086
  • Pages : 0 pages

Download or read book 3D Printing in Space written by National Research Council (U.S.). Committee on Space-Based Additive Manufacturing and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive manufacturing has the potential to positively affect human spaceflight operations by enabling the in-orbit manufacture of replacement parts and tools, which could reduce existing logistics requirements for the International Space Station and future long-duration human space missions. The benefits of in-space additive manufacturing for robotic spacecraft are far less clear, although this rapidly advancing technology can also potentially enable space-based construction of large structures and, perhaps someday, substantially in the future, entire spacecraft. Additive manufacturing can also help to reimagine a new space architecture that is not constrained by the design and manufacturing confines of gravity, current manufacturing processes, and launch-related structural stresses. The specific benefits and potential scope of additive manufacturing remain undetermined. The realities of what can be accomplished today, using this technology on the ground, demonstrate the substantial gaps between the vision for additive manufacturing in space and the limitations of the technology and the progress that has to be made to develop it for space use. 3D Printing in Space evaluates the prospects of in-space additive manufacturing. This report examines the various technologies available and currently in development, and considers the possible impacts for crewed space operations and robotic spacecraft operations. Ground-based additive manufacturing is being rapidly developed by industry, and 3D Printing in Space discusses government-industry investments in technology development. According to this report, the International Space Station provides an excellent opportunity for both civilian and military research on additive manufacturing technology. Additive manufacturing presents potential opportunities, both as a tool in a broad toolkit of options for space-based activities and as a potential paradigm-changing approach to designing hardware for in-space activities. This report makes recommendations for future research, suggests objectives for an additive manufacturing roadmap, and envisions opportunities for cooperation and joint development.

Book Fundamentals of Additive Manufacturing for the Practitioner

Download or read book Fundamentals of Additive Manufacturing for the Practitioner written by Sheku Kamara and published by John Wiley & Sons. This book was released on 2021-05-25 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Additive Manufacturing for the Practitioner Discover how to shift from traditional to additive manufacturing processes with this core resource from industry leaders Fundamentals of Additive Manufacturing for the Practitioner delivers a vital examination of the methods and techniques needed to transition from traditional to additive manufacturing. The book explains how traditional manufacturing work roles change as various industries move into additive manufacturing and describes the flow of the typical production process in additive manufacturing. Detailed explorations of the processes, inputs, machine and build preparation, post-processing, and best practices are included, as well as real-world examples of the principles discussed within. Every chapter includes a problems and opportunities section that prompts readers to apply the book’s techniques to their own work. Diagrams and tables are distributed liberally throughout the work to present concepts visually, and key options and decisions are highlighted to assist the reader in understanding how additive manufacturing changes traditional workflows. Readers will also benefit from the inclusion of A thorough introduction on how to move into additive manufacturing, including the identification of a manufacturing opportunity and its characteristics An exploration of how to determine if additive manufacturing is the right solution, with descriptions of the origins of additive manufacturing and the current state of the technology An examination of the materials used in additive manufacturing, including polymers, composites, metals, plasters, and biomaterials A discussion of choosing an additive manufacturing technology and process Perfect for mechanical engineers, manufacturing professionals, technicians, and designers new to additive manufacturing, Fundamentals of Additive Manufacturing for the Practitioner will also earn a place in the libraries of technical, vocational, and continuing education audiences seeking to improve their skills with additive manufacturing workflows.

Book Additive Manufacturing and 3D Printing Technology

Download or read book Additive Manufacturing and 3D Printing Technology written by G. K. Awari and published by CRC Press. This book was released on 2021-02-10 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive Manufacturing and 3D Printing Technology: Principles and Applications consists of the construction and working details of all modern additive manufacturing and 3D-printing technology processes and machines, while also including the fundamentals, for a well-rounded educational experience. The book is written to help the reader understand the fundamentals of the systems. This book provides a selection of additive manufacturing techniques suitable for near-term application with enough technical background to understand the domain, its applicability, and to consider variations to suit technical and organizational constraints. It highlights new innovative 3D-printing systems, presents a view of 4D printing, and promotes a vision of additive manufacturing and applications toward modern manufacturing engineering practices. With the block diagrams, self-explanatory figures, chapter exercises, and photographs of lab-developed prototypes, along with case studies, this new textbook will be useful to students studying courses in Mechanical, Production, Design, Mechatronics, and Electrical Engineering.

Book Additive Manufacturing Technologies and Applications

Download or read book Additive Manufacturing Technologies and Applications written by Salvatore Brischetto and published by MDPI. This book was released on 2018-07-09 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Additive Manufacturing Technologies and Applications" that was published in Technologies