Download or read book Space Time Methods written by Ulrich Langer and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-09-23 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.
Download or read book Constrained Optimization and Optimal Control for Partial Differential Equations written by Günter Leugering and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.
Download or read book Model Reduction of Parametrized Systems written by Peter Benner and published by Springer. This book was released on 2017-09-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
Download or read book Domain Decomposition Methods in Science and Engineering XXVI written by Susanne C. Brenner and published by Springer Nature. This book was released on 2023-03-15 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the 26th International Conference on Domain Decomposition Methods in Science and Engineering, which was hosted by the Chinese University of Hong Kong and held online in December 2020. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2020.
Download or read book SIAM Journal on Control and Optimization written by Society for Industrial and Applied Mathematics and published by . This book was released on 2009 with total page 1140 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Download or read book Large Scale Scientific Computing written by Ivan Lirkov and published by Springer. This book was released on 2018-01-10 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Conference on Large-Scale Scientific Computations, LSSC 2017, held in Sozopol, Bulgaria, in June 2017. The 63 revised short papers together with 3 full papers presented were carefully reviewed and selected from 63 submissions. The conference presents results from the following topics: Hierarchical, adaptive, domain decomposition and local refinement methods; Robust preconditioning algorithms; Monte Carlo methods and algorithms; Numerical linear algebra; Control and optimization; Parallel algorithms and performance analysis; Large-scale computations of environmental, biomedical and engineering problems. The chapter 'Parallel Aggregation Based on Compatible Weighted Matching for AMG' is available open access under a CC BY 4.0 license.
Download or read book Trends in Differential Equations and Applications written by Francisco Ortegón Gallego and published by Springer. This book was released on 2016-06-09 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work collects the most important results presented at the Congress on Differential Equations and Applications/Congress on Applied Mathematics (CEDYA/CMA) in Cádiz (Spain) in 2015. It supports further research in differential equations, numerical analysis, mechanics, control and optimization. In particular, it helps readers gain an overview of specific problems of interest in the current mathematical research related to different branches of applied mathematics. This includes the analysis of nonlinear partial differential equations, exact solutions techniques for ordinary differential equations, numerical analysis and numerical simulation of some models arising in experimental sciences and engineering, control and optimization, and also trending topics on numerical linear Algebra, dynamical systems, and applied mathematics for Industry. This volume is mainly addressed to any researcher interested in the applications of mathematics, especially in any subject mentioned above. It may be also useful to PhD students in applied mathematics, engineering or experimental sciences.
Download or read book Optimal Control of Nonlinear Parabolic Systems written by Pekka Neittaanmaki and published by CRC Press. This book was released on 1994-02-08 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses theoretical approaches to the study of optimal control problems governed by non-linear evolutions - including semi-linear equations, variational inequalities and systems with phase transitions. It also provides algorithms for solving non-linear parabolic systems and multiphase Stefan-like systems.
Download or read book Linear and Quasi linear Equations of Parabolic Type written by Olʹga A. Ladyženskaja and published by American Mathematical Soc.. This book was released on 1988 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.
Download or read book Optimization with PDE Constraints written by Michael Hinze and published by Springer Science & Business Media. This book was released on 2008-10-16 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.
Download or read book The Boundary Value Problems of Mathematical Physics written by O.A. Ladyzhenskaya and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.
Download or read book The Finite Element Method Theory Implementation and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
Download or read book Computational Optimization of Systems Governed by Partial Differential Equations written by Alfio Borzi and published by SIAM. This book was released on 2012-01-26 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a bridge between continuous optimization and PDE modelling and focuses on the numerical solution of the corresponding problems. Intended for graduate students in PDE-constrained optimization, it is also suitable as an introduction for researchers in scientific computing or optimization.
Download or read book Splines and PDEs From Approximation Theory to Numerical Linear Algebra written by Angela Kunoth and published by Springer. This book was released on 2018-09-20 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes readers on a multi-perspective tour through state-of-the-art mathematical developments related to the numerical treatment of PDEs based on splines, and in particular isogeometric methods. A wide variety of research topics are covered, ranging from approximation theory to structured numerical linear algebra. More precisely, the book provides (i) a self-contained introduction to B-splines, with special focus on approximation and hierarchical refinement, (ii) a broad survey of numerical schemes for control problems based on B-splines and B-spline-type wavelets, (iii) an exhaustive description of methods for computing and analyzing the spectral distribution of discretization matrices, and (iv) a detailed overview of the mathematical and implementational aspects of isogeometric analysis. The text is the outcome of a C.I.M.E. summer school held in Cetraro (Italy), July 2017, featuring four prominent lecturers with different theoretical and application perspectives. The book may serve both as a reference and an entry point into further research.
Download or read book Least Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
Download or read book Space time Methods written by Martin Neumüller and published by . This book was released on 2013 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: