EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Adaptive Mesh Refinement in Solution of Two phase Flow Problems

Download or read book Adaptive Mesh Refinement in Solution of Two phase Flow Problems written by N. Jia and published by . This book was released on 2007 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Structured Adaptive Mesh Refinement  SAMR  Grid Methods

Download or read book Structured Adaptive Mesh Refinement SAMR Grid Methods written by Scott B. Baden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers presented here describe research to improve the general understanding of the application of SAMR to practical problems, to identify issues critical to efficient and effective implementation on high performance computers and to stimulate the development of a community code repository for software including benchmarks to assist in the evaluation of software and compiler technologies. The ten chapters have been divided into two parts reflecting two major issues in the topic: programming complexity of SAMR algorithms and the applicability and numerical challenges of SAMR methods.

Book Adaptive Mesh Refinement Method for CFD Applications

Download or read book Adaptive Mesh Refinement Method for CFD Applications written by Oscar Luis Antepara Zambrano and published by . This book was released on 2019 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this thesis is the development of an adaptive mesh refinement (AMR) algorithm for computational fluid dynamics simulations using hexahedral and tetrahedral meshes. This numerical methodology is applied in the context of large-eddy simulations (LES) of turbulent flows and direct numerical simulations (DNS) of interfacial flows, to bring new numerical research and physical insight. For the fluid dynamics simulations, the governing equations, the spatial discretization on unstructured grids and the numerical schemes for solving Navier-Stokes equations are presented. The equations follow a discretization by conservative finite-volume on collocated meshes. For the turbulent flows formulation, the spatial discretization preserves symmetry properties of the continuous differential operators and the time integration follows a self-adaptive strategy, which has been well tested on unstructured grids. Moreover, LES model consisting of a wall adapting local-eddy-viscosity within a variational multi-scale formulation is used for the applications showed in this thesis. For the two-phase flow formulation, a conservative level-set method is applied for capturing the interface between two fluids and is implemented with a variable density projection scheme to simulate incompressible two-phase flows on unstructured meshes. The AMR algorithm developed in this thesis is based on a quad/octree data structure and keeps a relation of 1:2 between levels of refinement. In the case of tetrahedral meshes, a geometrical criterion is followed to keep the quality metric of the mesh on a reasonable basis. The parallelization strategy consists mainly in the creation of mesh elements in each sub-domain and establishes a unique global identification number, to avoid duplicate elements. Load balance is assured at each AMR iteration to keep the parallel performance of the CFD code. Moreover, a mesh multiplication algorithm (02) is reported to create large meshes, with different kind of mesh elements, but preserving the topology from a coarser original mesh. This thesis focuses on the study of turbulent flows and two-phase flows using an AMR framework. The cases studied for LES of turbulent flows applications are the flow around one and two separated square cylinders, and the flow around a simplified car model. In this context, a physics-based refinement criterion is developed, consisting of the residual velocity calculated from a multi-scale decomposition of the instantaneous velocity. This criteria ensures grid adaptation following the main vortical structures and giving enough mesh resolution on the zones of interest, i.e., flow separation, turbulent wakes, and vortex shedding. The cases studied for the two-phase flows are the DNS of 2D and 3D gravity-driven bubble, with a particular focus on the wobbling regime. A study of rising bubbles in the wobbling regime and the effect of dimensionless numbers on the dynamic behavior of the bubbles are presented. Moreover, the use of tetrahedral AMR is applied for the numerical simulation of gravity-driven bubbles in complex domains. On this topic, the methodology is validated on bubbles rising in cylindrical channels with different topology, where the study of these cases contributed to having new numerical research and physical insight in the development of a rising bubble with wall effects.

Book Applied Computational Fluid Dynamics Techniques

Download or read book Applied Computational Fluid Dynamics Techniques written by Rainald Löhner and published by John Wiley & Sons. This book was released on 2008-04-30 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics (CFD) is concerned with the efficient numerical solution of the partial differential equations that describe fluid dynamics. CFD techniques are commonly used in the many areas of engineering where fluid behavior is an important factor. Traditional fields of application include aerospace and automotive design, and more recently, bioengineering and consumer and medical electronics. With Applied Computational Fluid Dynamics Techniques, 2nd edition, Rainald Löhner introduces the reader to the techniques required to achieve efficient CFD solvers, forming a bridge between basic theoretical and algorithmic aspects of the finite element method and its use in an industrial context where methods have to be both as simple but also as robust as possible. This heavily revised second edition takes a practice-oriented approach with a strong emphasis on efficiency, and offers important new and updated material on; Overlapping and embedded grid methods Treatment of free surfaces Grid generation Optimal use of supercomputing hardware Optimal shape and process design Applied Computational Fluid Dynamics Techniques, 2nd edition is a vital resource for engineers, researchers and designers working on CFD, aero and hydrodynamics simulations and bioengineering. Its unique practical approach will also appeal to graduate students of fluid mechanics and aero and hydrodynamics as well as biofluidics.

Book Adaptive Mesh Refinement   Theory and Applications

Download or read book Adaptive Mesh Refinement Theory and Applications written by Tomasz Plewa and published by Springer Science & Business Media. This book was released on 2005-12-20 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced numerical simulations that use adaptive mesh refinement (AMR) methods have now become routine in engineering and science. Originally developed for computational fluid dynamics applications these methods have propagated to fields as diverse as astrophysics, climate modeling, combustion, biophysics and many others. The underlying physical models and equations used in these disciplines are rather different, yet algorithmic and implementation issues facing practitioners are often remarkably similar. Unfortunately, there has been little effort to review the advances and outstanding issues of adaptive mesh refinement methods across such a variety of fields. This book attempts to bridge this gap. The book presents a collection of papers by experts in the field of AMR who analyze past advances in the field and evaluate the current state of adaptive mesh refinement methods in scientific computing.

Book Small Scale Modeling and Simulation of Incompressible Turbulent Multi Phase Flow

Download or read book Small Scale Modeling and Simulation of Incompressible Turbulent Multi Phase Flow written by Stéphane Vincent and published by Springer Nature. This book was released on 2022-10-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides basic and recent research insights concerning the small scale modeling and simulation of turbulent multi-phase flows. By small scale, it has to be understood that the grid size for the simulation is smaller than most of the physical time and space scales of the problem. Small scale modeling of multi-phase flows is a very popular topic since the capabilities of massively parallel computers allows to go deeper into the comprehension and characterization of realistic flow configurations and at the same time, many environmental and industrial applications are concerned such as nuclear industry, material processing, chemical reactors, engine design, ocean dynamics, pollution and erosion in rivers or on beaches. The work proposes a complete and exhaustive presentation of models and numerical methods devoted to small scale simulation of incompressible turbulent multi-phase flows from specialists of the research community. Attention has also been paid to promote illustrations and applications, multi-phase flows and collaborations with industry. The idea is also to bring together developers and users of different numerical approaches and codes to share their experience in the development and validation of the algorithms and discuss the difficulties and limitations of the different methods and their pros and cons. The focus will be mainly on fixed-grid methods, however adaptive grids will be also partly broached, with the aim to compare and validate the different approaches and models.

Book Adaptive Mesh Refinement for Finite Element Flow Modeling in Complex Geometries

Download or read book Adaptive Mesh Refinement for Finite Element Flow Modeling in Complex Geometries written by Sujata Prakash and published by . This book was released on 1999 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive mesh refinement is a powerful tool for obtaining the highest solution accuracy for a given computational effort. Over the past decade, many adaptive techniques have been developed and applied to a variety of fluid flow problems. Results obtained for compressible flows, and to an extent, 2D incompressible flows have been impressive, however, similar progress has not been noted for 3D incompressible flows, particularly in complicated geometries. The objective of this thesis was to develop and test an adaptive solution methodology for 3D incompressible flow simulations in domains of arbitrary complexity. To characterize the finite element solution error, the Zienkiewicz-Zhu patch recovery error estimator (LPR) was adopted. An enhanced version of the LPR error estimator was formulated and implemented using 10-noded tetrahedral elements. The enhanced estimator (LPRC) resulted in significantly improved gradient recovery (and consequently, improved error estimates) at virtually no additional computational cost. For mesh refinement, an elemental subdivision procedure was implemented. To enable refinement in complex geometries, a procedure for preserving the boundary integrity of a refined mesh was developed. This methodology can be used for geometric data from any solid modeling (CAD) system provided the data can be exported in the IGES format. A benchmark study of the AMR procedure, in which steady flow over a three-dimensional backward-facing step was simulated, showed that the cumulative computational effort required in the adaptive analysis was lower than that required in a non-adaptive analysis of the same problem. In the second phase of this work, the AMR procedure was applied to modeling flow through two arterial geometries. Specifically, flows in an idealized end-to-side anastomosis and in a human right coronary artery were examined. Both studies assessed whether an AMR analysis could achieve more accurate solutions than conventional analyses that utilize high-resolution meshes whose gradation is based on 'a priori' knowledge of the flow field. It was noted that mesh-independent velocity fields were not very difficult to obtain even in the absence of an adaptive methodology. However, wall shear stress fields were much more difficult to absolutely resolve non-adaptively. Given that shear stresses occurring on arterial walls are widely believed to be a key factor governing the development of arterial disease, it is very important to accurately resolve wall shear stress fields if confidence can be placed in the results of numerical simulations of arterial flow phenomena. These results indicate that wall shear stress is an extremely sensitive measure of spatial resolution, and that the systematic solution-adaptive methodology developed in this thesis is very effective in producing accurately resolved wall shear stress fields.

Book Direct Numerical Simulations of Gas   Liquid Multiphase Flows

Download or read book Direct Numerical Simulations of Gas Liquid Multiphase Flows written by Grétar Tryggvason and published by Cambridge University Press. This book was released on 2011-03-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.

Book Mesh Adaption Strategies for Vortex dominated Flows

Download or read book Mesh Adaption Strategies for Vortex dominated Flows written by Sean Javad Kamkar and published by Stanford University. This book was released on 2011 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new adaptive mesh refinement strategy that is based on a coupled feature-detection and error-estimation approach is developed. The overall goal is to apply the proper degree of refinement to key vortical features in aircraft and rotorcraft wakes. The refinement paradigm is based on a two-stage process wherein the vortical regions are initially identified for refinement using feature-detection, and then the appropriate resolution is determined by the local solution error. The feature-detection scheme uses a local normalization procedure that allows it to automatically identify regions for refinement with threshold values that are not dependent upon the convective scales of the problem. An error estimator, based on the Richardson Extrapolation method, then supplies the identified features with appropriate levels of refinement. The estimator is shown to be well-behaved for steady-state and time-accurate aerodynamic flows. The above strategy is implemented within the Helios code, which features a dual-mesh paradigm of unstructured grids in the near-body domain, and adaptive Cartesian grids in the off-body domain. A main objective of this work is to control the adaption process so that high fidelity wake resolution is obtained in the off-body domain. The approach is tested on several theoretical and practical vortex-dominated flow-fields in an attempt to resolve wingtip vortices and rotor wakes. Accuracy improvements to rotorcraft performance metrics and increased wake resolution are simultaneously documented.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Multigrid Methods

Download or read book An Introduction to Multigrid Methods written by Pieter Wesseling and published by R.T. Edwards, Inc.. This book was released on 2004 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the principles, techniques, applications and literature of multigrid methods. Aimed at an audience with non-mathematical but computing-intensive disciplines and basic knowledge of analysis, partial differential equations and numerical mathematics, it is packed with helpful exercises, examples and illustrations.

Book Hyperbolic Problems  Theory  Numerics  Applications

Download or read book Hyperbolic Problems Theory Numerics Applications written by Michael Fey and published by Springer Science & Business Media. This book was released on 1999-04-01 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zürich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics.

Book A Framework for Mesh Refinement Suitable for Finite Volume and Discontinuous Galerkin Schemes with Application to Multiphase Flow Prediction

Download or read book A Framework for Mesh Refinement Suitable for Finite Volume and Discontinuous Galerkin Schemes with Application to Multiphase Flow Prediction written by Andrée-Anne Dion-Dallaire and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling multiphase flow, more specifically particle-laden flow, poses multiple challenges. These difficulties are heightened when the particles are differentiated by a set of "internal" variables, such as size or temperature. Traditional treatments of such flows can be classified in two main categories, Lagrangian and Eulerian methods. The former approaches are highly accurate but can also lead to extremely expensive computations and challenges to load balancing on parallel machines. In contrast, the Eulerian models offer the promise of less expensive computations but often introduce modelling artifacts and can become more complicated and expensive when a large number of internal variables are treated. Recently, a new model was proposed to treat such situations. It extends the ten-moment Gaussian model for viscous gases to the treatment of a dilute particle phase with an arbitrary number of internal variables. In its initial application, the only internal variable chosen for the particle phase was the particle diameter. This new polydisperse Gaussian model (PGM) comprises 15 equations, has an eigensystem that can be expressed in closed form and also possesses a convex entropy. Previously, this model has been tested in one dimension. The PGM was developed with the detonation of radiological dispersal devices (RDD) as an immediate application. The detonation of RDDs poses many numerical challenges, namely the wide range of spatial and temporal scales as well as the high computational costs to accurately resolve solutions. In order to address these issues, the goal of this current project is to develop a block-based adaptive mesh refinement (AMR) implementation that can be used in conjunction with a parallel computer. Another goal of this project is to obtain the first three-dimensional results for the PGM. In this thesis, the kinetic theory of gases underlying the development of the PGM is studied. Different numerical schemes and adaptive mesh refinement methods are described. The new block-based adaptive mesh refinement algorithm is presented. Finally, results for different flow problems using the new AMR algorithm are shown, as well as the first three-dimensional results for the PGM.

Book Recent Advances in Adaptive Computation

Download or read book Recent Advances in Adaptive Computation written by Zhongci Shi and published by American Mathematical Soc.. This book was released on 2005 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been rapid development in the area of adaptive computation over the past decade. The International Conference on Recent Advances in Adaptive Computation was held at Zhejiang University (Hangzhou, China) to explore these new directions. The conference brought together specialists to discuss modern theories and practical applications of adaptive methods. This volume contains articles reflecting the invited talks given by leading mathematicians at the conference. It is suitable for graduate students and researchers interested in methods of computation.

Book Adaptive Finite Element Method for Multiphase Flow and Poroelasticity

Download or read book Adaptive Finite Element Method for Multiphase Flow and Poroelasticity written by Hanyu Li and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation of subsurface flow for applications such as carbon sequestration and nuclear waste deposit has always been a computational challenge. The main reason points to the strong nonlinearity inherited in the governing equations that describe the multiphysics phenomena. The enormous number of unknowns and small timesteps required for stable Newtonian convergence make this type of problems computationally exhaustive. To address this issue, we introduce adaptive finite element approaches guided by a posteriori error estimators to improve computational efficiency. A space-time discretization scheme with temporal and spatial mesh adaptivity is formulated for multiphase flow system. The solution algorithm adopts a geometric multigrid procedure that starts with solving the system in the coarsest resolution and locally refines the mesh in both space and time. Error estimators that measure the spatial and temporal discretization error are employed to guide such an adaptivity. These estimators provide a global upper bound on the dual norm of the residual and the non-conformity of the numerical solution. Results from two-phase immiscible and three-phase miscible flow are presented to confirm solution accuracy and computational efficiency as compared to the uniformly fine timestep and fine spatial discretization solution. We also resolve the common issue of high frequency residuals in multigrid methods by local residual minimization and dynamic advection-diffusion coupling to achieve additional computational speedup and stability. In addition to the multiphase flow models, we also study the Biot system that couples poromechanics with flow. A posteriori error estimators are derived with the flow and mechanics solved by mixed finite element formulation and continuous Galerkin respectively in a fixed-stress split algorithm. The effectivity of such estimators is validated by Mandel’s problem which enable us to compute the a priori error with its analytical solution. We demonstrate the efficiency of the estimators for adaptive mesh refinement using a fractured porous media example. The validity of the novel stopping criterion which balances the fixed-stress algorithm error with the discretization error is confirmed afterwards. We aim to ultimately provide efficient computations for high fidelity models from carbon sequestration and underground hydrogen storage scenarios

Book Recent Advances in Problems of Flow and Transport in Porous Media

Download or read book Recent Advances in Problems of Flow and Transport in Porous Media written by J.M. Crolet and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous media, and especially phenomena of transport in such materials, are an impor1ant field of interest for geologists, hydrogeologists, researchers in soil and fluid mechanics, petroleum and chemical engineers, physicists and scientists in many other disciplines. The development of better numerical simulation techniques in combination with the enormous expansion of computer tools, have enabled numerical simulation of transport phenomena (mass of phases and components, energy etc. ) in porous domains of interest. Before any practical application of the results of such simulations can be used, it is essential that the simulation models have been proven to be valid. In order to establish the greatest possible coherence between the models and the physical reality, frequent interaction between numericians, mathematicians and the previously quoted researchers, is necessary. Once this coherence is established, the numerical simulations could be used to predict various phenomena such as water management, propagation of pollutants etc. These simulations could be, in many cases, the only financially acceptable tool to carry out an investigation. Current studies within various fields of applications include not only physical comprehension aspects of flow and energy or solute transport in saturated or unsaturated media but also numerical aspects in deriving strong complex equations. Among the various fields of applications generally two types of problems can be observed. Those associated with the pollution of the environment and those linked to water management. The former are essentially a problem in industrialized countries, the latter are a major source of concern in North-Africa.