EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Distributed Adaptive Consensus Control of Uncertain Multi Agent Systems

Download or read book Distributed Adaptive Consensus Control of Uncertain Multi Agent Systems written by Wei Wang and published by CRC Press. This book was released on 2024-08-15 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-agent systems are special networked systems full of research interest and practical sense, which are abundant in real life, ranging from mobile robot networks, intelligent transportation management, to multiple spacecraft, surveillance and monitoring. Consensus control is one of the most typical and hot research issues for multi-agent systems. Distributed Adaptive Consensus Control of Uncertain Multi-agent Systems provides innovative technologies to design and analyze distributed adaptive consensus for multi-agent systems with model uncertainties. Based on the basic graph theory and adaptive backstepping control, this monograph: · Describes the state of the art on distributed adaptive control, finite-time consensus control and event-triggered consensus control · Studies distributed adaptive consensus under directed communication graph condition: the methods with linearly parametric reference, hierarchical decomposition, and design of auxiliary filers · Explores adaptive finite-time consensus for uncertain nonlinear systems · Considers distributed adaptive consensus with event-triggered communication via state feedback and output feedback · Investigates distributed adaptive formation control of nonholonomic mobile robots with experimental verification · Provides distributed adaptive attitude synchronization control schemes for multiple spacecraft with event-triggered communication Distributed Adaptive Consensus Control of Uncertain Multi-agent Systems can help engineering students and professionals to efficiently learn distributed adaptive control design tool for handling uncertain multi-agent systems with directed communication graph, guaranteeing finite-time convergence and saving communication resources.

Book Cooperative Control of Multi Agent Systems

Download or read book Cooperative Control of Multi Agent Systems written by Frank L. Lewis and published by Springer Science & Business Media. This book was released on 2013-12-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.

Book Distributed Coordination of Multi agent Networks

Download or read book Distributed Coordination of Multi agent Networks written by Wei Ren and published by Springer Science & Business Media. This book was released on 2010-11-30 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed Coordination of Multi-agent Networks introduces problems, models, and issues such as collective periodic motion coordination, collective tracking with a dynamic leader, and containment control with multiple leaders, and explores ideas for their solution. Solving these problems extends the existing application domains of multi-agent networks; for example, collective periodic motion coordination is appropriate for applications involving repetitive movements, collective tracking guarantees tracking of a dynamic leader by multiple followers in the presence of reduced interaction and partial measurements, and containment control enables maneuvering of multiple followers by multiple leaders.

Book Nonlinear and Adaptive Control Design

Download or read book Nonlinear and Adaptive Control Design written by Miroslav Krstic and published by Wiley-Interscience. This book was released on 1995-06-14 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using a pedagogical style along with detailed proofs and illustrative examples, this book opens a view to the largely unexplored area of nonlinear systems with uncertainties. The focus is on adaptive nonlinear control results introduced with the new recursive design methodology--adaptive backstepping. Describes basic tools for nonadaptive backstepping design with state and output feedbacks.

Book Distributed Cooperative Control of Multi agent Systems

Download or read book Distributed Cooperative Control of Multi agent Systems written by Wenwu Yu and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and systematic introduction to the distributed cooperative control of multi-agent systems from a theoretical, network perspective Features detailed analysis and discussions on the distributed cooperative control and dynamics of multi-agent systems Covers comprehensively first order, second order and higher order systems, swarming and flocking behaviors Provides a broad theoretical framework for understanding the fundamentals of distributed cooperative control

Book Distributed Consensus in Multi vehicle Cooperative Control

Download or read book Distributed Consensus in Multi vehicle Cooperative Control written by Wei Ren and published by Springer Science & Business Media. This book was released on 2007-10-27 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming only neighbor-neighbor interaction among vehicles, this monograph develops distributed consensus strategies that ensure that the information states of all vehicles in a network converge to a common value. Readers learn to deal with groups of autonomous vehicles in aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.

Book Disturbance Observer Based Control

Download or read book Disturbance Observer Based Control written by Shihua Li and published by CRC Press. This book was released on 2016-04-19 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica

Book Distributed Heterogeneous Multi Sensor Task Allocation Systems

Download or read book Distributed Heterogeneous Multi Sensor Task Allocation Systems written by Itshak Tkach and published by Springer Nature. This book was released on 2019-11-25 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s real-world problems and applications in sensory systems and target detection require efficient, comprehensive and fault-tolerant multi-sensor allocation. This book presents the theory and applications of novel methods developed for such sophisticated systems. It discusses the advances in multi-agent systems and AI along with collaborative control theory and tools. Further, it examines the formulation and development of an allocation framework for heterogeneous multi-sensor systems for various real-world problems that require sensors with different performances to allocate multiple tasks, with unknown a priori priorities that arrive at unknown locations at unknown time. It demonstrates how to decide which sensor to allocate to which tasks when and where. Lastly, it explains the reliability and availability issues of task allocation systems, and includes methods for their optimization. The presented methods are explained, measured, and evaluated by extensive simulations, and the results of these simulations are presented in this book. This book is an ideal resource for academics, researchers and graduate students as well as engineers and professionals and is relevant for various applications such as sensor network design, multi-agent systems, task allocation, target detection, and team formation.

Book Adaptive Backstepping Control of Uncertain Systems

Download or read book Adaptive Backstepping Control of Uncertain Systems written by Jing Zhou and published by Springer Science & Business Media. This book was released on 2008-02-07 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book employs the powerful and popular adaptive backstepping control technology to design controllers for dynamic uncertain systems with non-smooth nonlinearities. Various cases including systems with time-varying parameters, multi-inputs and multi-outputs, backlash, dead-zone, hysteresis and saturation are considered in design and analysis. For multi-inputs and multi-outputs systems, both centralized and decentralized controls are addressed. This book not only presents recent research results including theoretical success and practical development such as the proof of system stability and the improvement of system tracking and transient performance, but also gives self-contained coverage of fundamentals on the backstepping approach illustrated with simple examples. Detail description of methodologies for the construction of adaptive laws, feedback control laws and associated Lyapunov functions is systematically provided in each case. Approaches used for the analysis of system stability and tracking and transient performances are elaborated. Two case studies are presented to show how the presented theories are applied.

Book A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence

Download or read book A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence written by Nikos Kolobov and published by Springer Nature. This book was released on 2022-06-01 with total page 71 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.

Book Multi agent Optimization

Download or read book Multi agent Optimization written by Angelia Nedić and published by Springer. This book was released on 2018-11-01 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.

Book Formation Control

Download or read book Formation Control written by Hyo-Sung Ahn and published by Springer. This book was released on 2019-03-29 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.

Book Rollout  Policy Iteration  and Distributed Reinforcement Learning

Download or read book Rollout Policy Iteration and Distributed Reinforcement Learning written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2021-08-20 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts. The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism. Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures. Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.

Book Machine Learning and Knowledge Discovery in Databases

Download or read book Machine Learning and Knowledge Discovery in Databases written by Walter Daelemans and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Book Distributed Control of Robotic Networks

Download or read book Distributed Control of Robotic Networks written by Francesco Bullo and published by Princeton University Press. This book was released on 2009-07-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms. Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises. Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation

Book Iterative Learning Control for Multi agent Systems Coordination

Download or read book Iterative Learning Control for Multi agent Systems Coordination written by Shiping Yang and published by John Wiley & Sons. This book was released on 2017-03-03 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely guide using iterative learning control (ILC) as a solution for multi-agent systems (MAS) challenges, showcasing recent advances and industrially relevant applications Explores the synergy between the important topics of iterative learning control (ILC) and multi-agent systems (MAS) Concisely summarizes recent advances and significant applications in ILC methods for power grids, sensor networks and control processes Covers basic theory, rigorous mathematics as well as engineering practice

Book Distributed Cooperative Control and Communication for Multi agent Systems

Download or read book Distributed Cooperative Control and Communication for Multi agent Systems written by Dong Yue and published by Springer Nature. This book was released on 2021-02-15 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates distributed cooperative control and communication of MASs including linear systems, nonlinear systems and multiple rigid body systems. The model-based and data-driven control method are employed to design the (optimal) cooperative control protocol. The approaches of this book consist of model-based and data-driven control such as predictive control, event-triggered control, optimal control, adaptive dynamic programming, etc. From this book, readers can learn about distributed cooperative control methods, data-driven control, finite-time stability analysis, cooperative attitude control of multiple rigid bodies. Some fundamental knowledge prepared to read this book is finite-time stability theory, event-triggered sampling mechanism, adaptive dynamic programming and optimal control.