EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Mathematics Education as a Research Domain  A Search for Identity

Download or read book Mathematics Education as a Research Domain A Search for Identity written by Anna Sierpinska and published by Springer Science & Business Media. This book was released on 1998-01-31 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1978, in the foreword to Weeding and Sowing: A Preface to a Science of Mathematics Education, Hans Freudenthal wrote that his book is a preface to a science that does not exist. Almost 20 years later, does his claim still hold true? The present book is the result of the reflection of many individuals in mathematics education on this and related questions. Is mathematics education a science? Is it a discipline? In what sense? What is its place within other domains of research and academic disciplines? What accounts for its specificity? In the book, the reader will find a range of possible answers to these questions, a variety of analyses of the actual directions of research in different countries, and a number of visions for the future of research in mathematics education. The book is a result of an ICMI Study, whose theme was formulated as: `What is Research in Mathematics Education and What are Its Results?'. One important outcome of this study was the realization of the reasons for the difficulty of the questions that the study was posing, leading possibly to a set of other questions, better suited to the actual concerns and research practices of mathematics education researchers. The book addresses itself to researchers in mathematics education and all those working in their neighborhood who are concerned with the problems of the definition of this new scientific domain emerging at their borders.

Book ACTUAL RESEARCH IN MATHEMATICS AND SCIENCE EDUCATION

Download or read book ACTUAL RESEARCH IN MATHEMATICS AND SCIENCE EDUCATION written by DOÇ. DR. TAYFUN TUTAK and published by EĞİTİM YAYINEVİ. This book was released on 2022-09-16 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Science and Mathematics Education for 21st Century Citizens

Download or read book Science and Mathematics Education for 21st Century Citizens written by Laurinda Leite and published by Nova Science Publishers. This book was released on 2020 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--

Book Handbook of Research Design in Mathematics and Science Education

Download or read book Handbook of Research Design in Mathematics and Science Education written by Anthony Edward Kelly and published by Taylor & Francis. This book was released on 2012-10-12 with total page 995 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.

Book Research and the Quality of Science Education

Download or read book Research and the Quality of Science Education written by Kerst Boersma and published by Springer Science & Business Media. This book was released on 2006-02-23 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: In August 2003 over 400 researchers in the field of science education from all over the world met at the 4th ESERA conference in Noordwijkerhout, The Netherlands. During the conference 300 papers about actual issues in the field, such as the learning of scientific concepts and skills, scientific literacy, informal science learning, science teacher education, modeling in science education were presented. The book contains 40 of the most outstanding papers presented during the conference. These papers reflect the quality and variety of the conference and represent the state of the art in the field of research in science education.

Book University Science and Mathematics Education in Transition

Download or read book University Science and Mathematics Education in Transition written by Ole Skovsmose and published by Springer Science & Business Media. This book was released on 2008-11-19 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than ever, our time is characterised by rapid changes in the organisation and the production of knowledge. This movement is deeply rooted in the evolution of the scientific endeavour, as well as in the transformation of the political, economic and cultural organisation of society. In other words, the production of scientific knowledge is changing both with regard to the internal development of science and technology, and with regard to the function and role science and technology fulfill in society. This general social context in which universities and knowledge production are placed has been given different names: the informational society, the knowledge society, the learning society, the post-industrial society, the risk society, or even the post-modern society. A common feature of different characterisations of this historic time is the fact that it is a period in construction. Parts of the world, not only of the First World but also chunks of the Developing World, are involved in these transformations. There is a movement from former social, political and cultural forms of organisation which impact knowledge production into new forms. These forms drive us into forms of organisation that are unknown and that, for their very same complexity, do not show a clear ending stage. Somehow the utopias that guided the ideas of development and progress in the past are not present anymore, and therefore the transitions in the knowledge society generate a new uncertain world. We find ourselves and our universities to be in a transitional period in time. In this context, it is difficult to avoid considering seriously the challenges that such a complex and uncertain social configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. It is clear that the transformation of knowledge outside universities has implied a change in the routes that research in mathematics, science and technology has taken in the last decades. It is also clear that in different parts of the world these changes have happened at different points in time. While universities in the "New World" (the American Continent, Africa, Asia and Oceania) have accommodated their operation to the challenges of the construction in the new world, in many European countries universities with a longer existence and tradition have moved more slowly into this time of transformation and have been responding at a less rapid pace to environmental challenges. The process of tuning universities, together with their forms of knowledge production and their provision of education in science and mathematics, with the demands of the informational society has been a complex process, as complex as the general transformation undergoing in society. Therefore an understanding of the current transitions in science and mathematics education has to consider different dimensions involved in such a change. Traditionally, educational studies in mathematics and science education have looked at changes in education from within the scientific disciplines and in the closed context of the classroom. Although educational change in the very end is implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. This book contributes to understanding some of the multiple aspects and dimensions of the transition of science and mathematics education in the current informational society. Such an understanding is necessary for finding possibilities to improve science and mathematics education in universities all around the world. Such a broad approach to the transitions happening in these fields has not been addressed yet by existing books in the market.

Book Living Culturally Responsive Mathematics Education with in Indigenous Communities

Download or read book Living Culturally Responsive Mathematics Education with in Indigenous Communities written by and published by BRILL. This book was released on 2019-11-26 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Living Culturally Responsive Mathematics Education with/in Indigenous Communities provides a critical examination of the nature, possibilities and challenges of culturally responsive mathematics education and how it is lived with/in Indigenous communities across international contexts connecting land, community, mathematics, and culture.

Book Mathematics  Science  and Technology Education  A Research Agenda

Download or read book Mathematics Science and Technology Education A Research Agenda written by Committee on Research in Mathematics Science and Technology Education and published by National Academies Press. This book was released on 1985-01-01 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Improving Indicators of the Quality of Science and Mathematics Education in Grades K 12

Download or read book Improving Indicators of the Quality of Science and Mathematics Education in Grades K 12 written by National Research Council and published by National Academies Press. This book was released on 1988-02-01 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a carefully developed monitoring system to track the progress of mathematics and science education, particularly the effects of ongoing efforts to improve students' scientific knowledge and mathematics competency. It describes an improved series of indicators to assess student learning, curriculum quality, teaching effectiveness, student behavior, and financial and leadership support for mathematics and science education. Of special interest is a critical review of current testing methods and their use in probing higher-order skills and evaluating educational quality.

Book Handbook of Research on Science Education

Download or read book Handbook of Research on Science Education written by Sandra K. Abell and published by Lawrence Erlbaum Assoc Incorporated. This book was released on 2007-01 with total page 1330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This state-of-the art research handbook provides a comprehensive, coherent, current synthesis of the empirical and theoretical research concerning teaching and learning in science and lays down a foundation upon which future research can be built. Structured to highlight recent trends in the field, the volume is organized around five themes: *Science Learning; *Culture, Gender, and Society and Science Learning; *Science Teaching; *Curriculum and Assessment in Science; and *Science Teacher Education The contributors, all leading experts in their research areas, represent the international and gender diversity that exists in the science education research community. Each chapter presents an integrative review of the research on the topic it addresses—pulling together the existing research, working to understand the historical trends and patterns in that body of scholarship, describing how the issue is conceptualized within the literature, how methods and theories have shaped the outcomes of the research, and where the strengths, weaknesses, and gaps are in the literature. Chapters conclude with implications for practice and proposed agendas for future research. As a whole, the Handbook of Research on Science Education demonstrates that science education is alive and well and illustrates its vitality. It is an essential resource for the entire science education community, including veteran and emerging researchers, university faculty, graduate students, practitioners in the schools, and science education professionals outside of universities.

Book Interdisciplinary Research in Mathematics  Science  and Technology Education

Download or read book Interdisciplinary Research in Mathematics Science and Technology Education written by National Research Council and published by National Academies Press. This book was released on 1987-02-01 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding Mathematics and Science Matters

Download or read book Understanding Mathematics and Science Matters written by Thomas A. Romberg and published by Routledge. This book was released on 2005-03-23 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research reported in this book provides reliable evidence on and knowledge about mathematics and science instruction that emphasizes student understanding--instruction consistent with the needs of students who will be citizens in an increasingly demanding technological world. The National Center for Improving Student Learning in Mathematics and Science--established in 1996 as a research center and funded by the U.S. Department of Education--was instrumental in developing instructional practices supportive of high student achievement in and understanding of mathematics and science concepts. NCISLA researchers worked with teachers, students, and administrators to construct learning environments that exemplify current research and theory about effective learning of mathematics and science. The careful programs of research conducted examined how instructional content and design, assessment, professional development, and organizational support can be designed, implemented, and orchestrated to support the learning of all students. This book presents a summary of the concepts, findings, and conclusions of the Center's research from 1996-2001. In the Introduction, the chapters in Understanding Mathematics and Science Matters are situated in terms of the reform movement in school mathematics and school science. Three thematically structured sections focus on, respectively, research directed toward what is involved when students learn mathematics and science with understanding; research on the role of teachers and the problems they face when attempting to teach their students mathematics and science with understanding; and a collaboration among some of the contributors to this volume to gather information about classroom assessment practices and organizational support for reform. The goal of this book is to help educational practitioners, policymakers, and the general public to see the validity of the reform recommendations, understand the recommended guidelines, and to use these to transform teaching and learning of mathematics and science in U.S. classrooms.

Book Interdisciplinary Educational Research In Mathematics and Its Connections to The Arts and Sciences

Download or read book Interdisciplinary Educational Research In Mathematics and Its Connections to The Arts and Sciences written by Bharath Sriraman and published by IAP. This book was released on 2008-09-01 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is based on the recently held Symposium on mathematics and its connections to the arts and sciences, namely the second Mathematics and its Connections to the Arts and Sciences (MACAS2)Symposium in Odense, Denmark (May 29-31, 2007). The chapters are an eclectic collection of interdisciplinary research initiatives undertaken by mathematics educators with implications for practitioners concerned with teaching and learning processes. The papers cover a wide genre of research domains within mathematics education (cognition, modelling, problem solving, teacher education, ethnomathematics, mathematical/statistical literacy, curricular and technological initiatives and research related to science education). The major interdisciplinary themes of the papers in this book are: 1. How can modelling activities be used to foster interdisciplinary projects in the school and university setting? 2. How can the intricate connections between mathematics and physics be used to design and research interdisciplinary activities in schools and the university? 3. How can research within the ethnomathematics domain of mathematics education be linked to critical mathematics education and interdisciplinary projects involving mathematics, art and culture? 4. How can the push for mathematical and statistical literacy be connected to other subjects in the school curricula and emphasized via interdisciplinary activities? 5. What are concrete examples of classroom experiments with empirical data that demonstrate new and unusual connections/relations between mathematics, arts and the sciences with implications for pedagogy? 6. What is the role of technology and new ICT interfaces in linking communities of learners in interdisciplinary activities involving problem solving? The book is an important contribution to the literature on educational initiatives in interdisciplinary education increasing vital for emerging professions of the 21st century.

Book Mathematical Problem Posing

Download or read book Mathematical Problem Posing written by Florence Mihaela Singer and published by Springer. This book was released on 2015-06-12 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematics education community continues to contribute research-based ideas for developing and improving problem posing as an inquiry-based instructional strategy for enhancing students’ learning. A large number of studies have been conducted which have covered many research topics and methodological aspects of teaching and learning mathematics through problem posing. The Authors' groundwork has shown that many of these studies predict positive outcomes from implementing problem posing on: student knowledge, problem solving and posing skills, creativity and disposition toward mathematics. This book examines, in-depth, the contribution of a problem posing approach to teaching mathematics and discusses the impact of adopting this approach on the development of theoretical frameworks, teaching practices and research on mathematical problem posing over the last 50 years. ​​

Book Mathematics and Science Education Around the World

Download or read book Mathematics and Science Education Around the World written by National Research Council and published by National Academies Press. This book was released on 1996-10-18 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amid current efforts to improve mathematics and science education in the United States, people often ask how these subjects are organized and taught in other countries. They hear repeatedly that other countries produce higher student achievement. Teachers and parents wonder about the answers to questions like these: Why do the children in Asian cultures seem to be so good at science and mathematics? How are biology and physics taught in the French curriculum? What are textbooks like elsewhere, and how much latitude do teachers have in the way they follow the texts? Do all students receive the same education, or are they grouped by ability or perceived educational promise? If students are grouped, how early is this done? What are tests like, and what are the consequences for students? Are other countries engaged in Standards-like reforms? Does anything like "standards" play a role in other countries? Questions such as these reflect more than a casual interest in other countries' educational practices. They grow out of an interest in identifying ways to improve mathematics and science education in the United States. The focus of this short report is on what the Third International Mathematics and Science Study (TIMSS), a major international investigation of curriculum, instruction, and learning in mathematics and science, will be able to contribute to understandings of mathematics and science education around the world as well as to current efforts to improve student learning, particularly in the United States.

Book Improving Mathematics Education

Download or read book Improving Mathematics Education written by National Research Council and published by National Academies Press. This book was released on 2002-01-28 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improving Mathematics Education has been designed to help inform stakeholders about the decisions they face, to point to recent research findings, and to provide access to the most recent thinking of experts on issues of national concern in mathematics education. The essence of the report is that information is available to help those charged with improving student achievement in mathematics. The documents cited above can guide those who make decisions about content, learning, teaching, and assessment. The report is organized around five key questions: What should we teach, given what we know and value about mathematics and its roles? How should we teach so children learn, given what we know about students, mathematics, and how people learn mathematics? What preparation and support do teachers need? How do we know whether what we are doing is working? What must change? Each of the five main chapters in this report considers a key area of mathematics education and describes the core messages of current publication(s) in that area. To maintain the integrity of each report's recommendations, we used direct quotes and the terminology defined and used in that report. If the wording or terminology seems to need clarification, the committee refers the reader directly to the original document. Because these areas are interdependent, the documents often offer recommendations related to several different areas. While the individual documents are discussed under only one of the components in Improving Mathematics Education, the reader should recognize that each document may have a broader scope. In general, the references in this report should serve as a starting point for the interested reader, who can refer to the original documents for fuller discussions of the recommendations and, in some cases, suggestions for implementation. Improving Mathematics Education is designed to help educators build a critical knowledge base about mathematics education, recognizing that the future of the nation's students is integrally intertwined with the decisions we make (or fail to make) about the mathematics education they receive.

Book Designing Professional Development for Teachers of Science and Mathematics

Download or read book Designing Professional Development for Teachers of Science and Mathematics written by Susan Loucks-Horsley and published by Corwin Press. This book was released on 2009-11-24 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This third edition represents the gold standard of resources for those working in the field of professional development. My staff and I highly recommend this book as a primary resource for designing and continuously improving professional development programs for teachers of science and mathematics. Unlike other resources, this unique and important book provides current research, an updated strategic planning framework, and access to a portfolio of best practices for informing your work." —Sally Goetz Shuler, Executive Director National Science Resources Center "In the 21st century when STEM education has become vital for our students and our nation and the importance of quality professional development has increased at least tenfold, this seminal work should be required reading for every education leader. It is both practical and scholarly in guiding a school toward a culture of continuous learning and improvement." —Harold Pratt, President, Science Curriculum Inc. Former President, National Science Teachers Association The classic guide for designing robust science and mathematics professional development programs! This expanded edition of one of the most widely cited resources in the field of professional learning for mathematics and science educators demonstrates how to design professional development for teachers that is directly linked to improving student learning. Presenting an updated professional development (PD) planning framework, the third edition of the bestseller reflects current research on PD design, underscores how beliefs and local factors can influence the PD design, illustrates a wide range of PD strategies, and emphasizes the importance of: Continuous program monitoring Combining strategies to address diverse needs Building cultures that sustain learning An inspiring blend of theory and practical wisdom, Designing Professional Development for Teachers of Science and Mathematics remains a highly regarded reference for improving professional practice and student achievement.