Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Download or read book Aircraft Control Allocation written by Wayne Durham and published by John Wiley & Sons. This book was released on 2017-01-17 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aircraft Control Allocation Wayne Durham, Virginia Polytechnic Institute and State University, USA Kenneth A. Bordignon, Embry-Riddle Aeronautical University, USA Roger Beck, Dynamic Concepts, Inc., USA An authoritative work on aircraft control allocation by its pioneers Aircraft Control Allocation addresses the problem of allocating supposed redundant flight controls. It provides introductory material on flight dynamics and control to provide the context, and then describes in detail the geometry of the problem. The book includes a large section on solution methods, including 'Banks' method', a previously unpublished procedure. Generalized inverses are also discussed at length. There is an introductory section on linear programming solutions, as well as an extensive and comprehensive appendix dedicated to linear programming formulations and solutions. Discrete-time, or frame-wise allocation, is presented, including rate-limiting, nonlinear data, and preferred solutions. Key features: Written by pioneers in the field of control allocation. Comprehensive explanation and discussion of the major control allocation solution methods. Extensive treatment of linear programming solutions to control allocation. A companion web site contains the code of a MATLAB/Simulink flight simulation with modules that incorporate all of the major solution methods. Includes examples based on actual aircraft. The book is a vital reference for researchers and practitioners working in aircraft control, as well as graduate students in aerospace engineering.
Download or read book A Regularized Active Set method For Sparse Convex Quadratic Programming written by and published by Stanford University. This book was released on with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Interior point Polynomial Algorithms in Convex Programming written by Yurii Nesterov and published by SIAM. This book was released on 1994-01-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Download or read book On Complexity Certification of Active Set QP Methods with Applications to Linear MPC written by Daniel Arnström and published by Linköping University Electronic Press. This book was released on 2021-03-03 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: In model predictive control (MPC) an optimization problem has to be solved at each time step, which in real-time applications makes it important to solve these efficiently and to have good upper bounds on worst-case solution time. Often for linear MPC problems, the optimization problem in question is a quadratic program (QP) that depends on parameters such as system states and reference signals. A popular class of methods for solving such QPs is active-set methods, where a sequence of linear systems of equations is solved. The primary contribution of this thesis is a method which determines which sequence of subproblems a popular class of such active-set algorithms need to solve, for every possible QP instance that might arise from a given linear MPC problem (i.e, for every possible state and reference signal). By knowing these sequences, worst-case bounds on how many iterations, floating-point operations and, ultimately, the maximum solution time, these active-set algorithms require to compute a solution can be determined, which is of importance when, e.g, linear MPC is used in safety-critical applications. After establishing this complexity certification method, its applicability is extended by showing how it can be used indirectly to certify the complexity of another, efficient, type of active-set QP algorithm which reformulates the QP as a nonnegative least-squares method. Finally, the proposed complexity certification method is extended further to situations when enhancements to the active-set algorithms are used, namely, when they are terminated early (to save computations) and when outer proximal-point iterations are performed (to improve numerical stability).
Download or read book Large Scale PDE Constrained Optimization written by Lorenz T. Biegler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.
Download or read book The Linear Complementarity Problem written by Richard W. Cottle and published by SIAM. This book was released on 2009-08-27 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: A revised edition of the standard reference on the linear complementarity problem.
Download or read book Primal dual Interior Point Methods written by Stephen J. Wright and published by SIAM. This book was released on 1997-01-01 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.
Download or read book Linear and Combinatorial Programming written by Katta G. Murty and published by . This book was released on 1985 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Practical Optimization Methods written by M. Asghar Bhatti and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 711 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook adopts a practical and intuitive approach, rather than emphasizing mathematical rigor. Computationally oriented books in this area generally present algorithms alone, and expect readers to perform computations by hand, and are often written in traditional computer languages, such as Basic, Fortran or Pascal. This book, on the other hand, is the first text to use Mathematica to develop a thorough understanding of optimization algorithms, fully exploiting Mathematica's symbolic, numerical and graphic capabilities.
Download or read book Linear Programming written by Michael J. Best and published by Prentice Hall. This book was released on 1985 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Trust Region Methods written by A. R. Conn and published by SIAM. This book was released on 2000-01-01 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.
Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Download or read book Developments in Global Optimization written by Immanuel M. Bomze and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years global optimization has found applications in many interesting areas of science and technology including molecular biology, chemical equilibrium problems, medical imaging and networks. The collection of papers in this book indicates the diverse applicability of global optimization. Furthermore, various algorithmic, theoretical developments and computational studies are presented. Audience: All researchers and students working in mathematical programming.
Download or read book Mixed Integer Nonlinear Programming written by Jon Lee and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.
Download or read book Predictive Control for Linear and Hybrid Systems written by Francesco Borrelli and published by Cambridge University Press. This book was released on 2017-06-22 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).