EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Abelian Properties of Anick Spaces

Download or read book Abelian Properties of Anick Spaces written by Brayton Gray and published by American Mathematical Soc.. This book was released on 2017-02-20 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anick spaces are closely connected with both EHP sequences and the study of torsion exponents. In addition they refine the secondary suspension and enter unstable periodicity. This work describes their -space properties as well as universal properties. Techniques include a new kind on Whitehead product defined for maps out of co-H spaces, calculations in an additive category that lies between the unstable category and the stable category, and a controlled version of the extension theorem of Gray and Theriault (Geom. Topol. 14 (2010), no. 1, 243–275).

Book Maximal Abelian Sets of Roots

Download or read book Maximal Abelian Sets of Roots written by R. Lawther and published by American Mathematical Soc.. This book was released on 2018-01-16 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work the author lets be an irreducible root system, with Coxeter group . He considers subsets of which are abelian, meaning that no two roots in the set have sum in . He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of : for each -orbit of maximal abelian sets we provide an explicit representative , identify the (setwise) stabilizer of in , and decompose into -orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian -subgroups of finite groups of Lie type over fields of characteristic . Parts of the work presented here have been used to confirm the -rank of , and (somewhat unexpectedly) to obtain for the first time the -ranks of the Monster and Baby Monster sporadic groups, together with the double cover of the latter. Root systems of classical type are dealt with quickly here; the vast majority of the present work concerns those of exceptional type. In these root systems the author introduces the notion of a radical set; such a set corresponds to a subgroup of a simple algebraic group lying in the unipotent radical of a certain maximal parabolic subgroup. The classification of radical maximal abelian sets for the larger root systems of exceptional type presents an interesting challenge; it is accomplished by converting the problem to that of classifying certain graphs modulo a particular equivalence relation.

Book Nonsmooth Differential Geometry An Approach Tailored for Spaces with Ricci Curvature Bounded from Below

Download or read book Nonsmooth Differential Geometry An Approach Tailored for Spaces with Ricci Curvature Bounded from Below written by Nicola Gigli and published by American Mathematical Soc.. This book was released on 2018-02-23 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

Book Property   T   for Groups Graded by Root Systems

Download or read book Property T for Groups Graded by Root Systems written by Mikhail Ershov and published by American Mathematical Soc.. This book was released on 2017-09-25 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors introduce and study the class of groups graded by root systems. They prove that if is an irreducible classical root system of rank and is a group graded by , then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of . As the main application of this theorem the authors prove that for any reduced irreducible classical root system of rank and a finitely generated commutative ring with , the Steinberg group and the elementary Chevalley group have property . They also show that there exists a group with property which maps onto all finite simple groups of Lie type and rank , thereby providing a “unified” proof of expansion in these groups.

Book Rationality Problem for Algebraic Tori

Download or read book Rationality Problem for Algebraic Tori written by Akinari Hoshi and published by American Mathematical Soc.. This book was released on 2017-07-13 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give the complete stably rational classification of algebraic tori of dimensions and over a field . In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank and is given. The authors show that there exist exactly (resp. , resp. ) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension , and there exist exactly (resp. , resp. ) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension . The authors make a procedure to compute a flabby resolution of a -lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a -lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby -lattices of rank up to and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for -lattices holds when the rank , and fails when the rank is ...

Book Tensor Products and Regularity Properties of Cuntz Semigroups

Download or read book Tensor Products and Regularity Properties of Cuntz Semigroups written by Ramon Antoine and published by American Mathematical Soc.. This book was released on 2018-02-23 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cuntz semigroup of a -algebra is an important invariant in the structure and classification theory of -algebras. It captures more information than -theory but is often more delicate to handle. The authors systematically study the lattice and category theoretic aspects of Cuntz semigroups. Given a -algebra , its (concrete) Cuntz semigroup is an object in the category of (abstract) Cuntz semigroups, as introduced by Coward, Elliott and Ivanescu. To clarify the distinction between concrete and abstract Cuntz semigroups, the authors call the latter -semigroups. The authors establish the existence of tensor products in the category and study the basic properties of this construction. They show that is a symmetric, monoidal category and relate with for certain classes of -algebras. As a main tool for their approach the authors introduce the category of pre-completed Cuntz semigroups. They show that is a full, reflective subcategory of . One can then easily deduce properties of from respective properties of , for example the existence of tensor products and inductive limits. The advantage is that constructions in are much easier since the objects are purely algebraic.

Book Applications of Polyfold Theory I  The Polyfolds of Gromov Witten Theory

Download or read book Applications of Polyfold Theory I The Polyfolds of Gromov Witten Theory written by H. Hofer and published by American Mathematical Soc.. This book was released on 2017-07-13 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper the authors start with the construction of the symplectic field theory (SFT). As a general theory of symplectic invariants, SFT has been outlined in Introduction to symplectic field theory (2000), by Y. Eliashberg, A. Givental and H. Hofer who have predicted its formal properties. The actual construction of SFT is a hard analytical problem which will be overcome be means of the polyfold theory due to the present authors. The current paper addresses a significant amount of the arising issues and the general theory will be completed in part II of this paper. To illustrate the polyfold theory the authors use the results of the present paper to describe an alternative construction of the Gromov-Witten invariants for general compact symplectic manifolds.

Book Maximal Cohen Macaulay Modules Over Non Isolated Surface Singularities and Matrix Problems

Download or read book Maximal Cohen Macaulay Modules Over Non Isolated Surface Singularities and Matrix Problems written by Igor Burban and published by American Mathematical Soc.. This book was released on 2017-07-13 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this article the authors develop a new method to deal with maximal Cohen–Macaulay modules over non–isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen–Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen–Macaulay representation type. The authors' approach is illustrated on the case of k as well as several other rings. This study of maximal Cohen–Macaulay modules over non–isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.

Book Special Values of the Hypergeometric Series

Download or read book Special Values of the Hypergeometric Series written by Akihito Ebisu and published by American Mathematical Soc.. This book was released on 2017-07-13 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, the author presents a new method for finding identities for hypergeoemtric series, such as the (Gauss) hypergeometric series, the generalized hypergeometric series and the Appell-Lauricella hypergeometric series. Furthermore, using this method, the author gets identities for the hypergeometric series and shows that values of at some points can be expressed in terms of gamma functions, together with certain elementary functions. The author tabulates the values of that can be obtained with this method and finds that this set includes almost all previously known values and many previously unknown values.

Book Homotopy Fibrations with a Section after Looping

Download or read book Homotopy Fibrations with a Section after Looping written by Stephen Theriault and published by American Mathematical Society. This book was released on 2024-08-19 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.

Book Knot Invariants and Higher Representation Theory

Download or read book Knot Invariants and Higher Representation Theory written by Ben Webster and published by American Mathematical Soc.. This book was released on 2018-01-16 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for sl and sl and by Mazorchuk-Stroppel and Sussan for sl . The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is sl , the author shows that these categories agree with certain subcategories of parabolic category for gl .

Book Orthogonal and Symplectic  n  level Densities

Download or read book Orthogonal and Symplectic n level Densities written by A. M. Mason and published by American Mathematical Soc.. This book was released on 2018-02-23 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper the authors apply to the zeros of families of -functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the -correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or -functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of -functions have an underlying symmetry relating to one of the classical compact groups , and . Here the authors complete the work already done with (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the -level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the -level densities of zeros of -functions with orthogonal or symplectic symmetry, including all the lower order terms. They show how the method used here results in formulae that are easily modified when the test function used has a restricted range of support, and this will facilitate comparison with rigorous number theoretic -level density results.

Book Fundamental Solutions and Local Solvability for Nonsmooth Hormander s Operators

Download or read book Fundamental Solutions and Local Solvability for Nonsmooth Hormander s Operators written by Marco Bramanti and published by American Mathematical Soc.. This book was released on 2017-09-25 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors consider operators of the form in a bounded domain of where are nonsmooth Hörmander's vector fields of step such that the highest order commutators are only Hölder continuous. Applying Levi's parametrix method the authors construct a local fundamental solution for and provide growth estimates for and its first derivatives with respect to the vector fields. Requiring the existence of one more derivative of the coefficients the authors prove that also possesses second derivatives, and they deduce the local solvability of , constructing, by means of , a solution to with Hölder continuous . The authors also prove estimates on this solution.

Book Induction  Bounding  Weak Combinatorial Principles  and the Homogeneous Model Theorem

Download or read book Induction Bounding Weak Combinatorial Principles and the Homogeneous Model Theorem written by Denis R. Hirschfeldt and published by American Mathematical Soc.. This book was released on 2017-09-25 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Goncharov and Peretyat'kin independently gave necessary and sufficient conditions for when a set of types of a complete theory is the type spectrum of some homogeneous model of . Their result can be stated as a principle of second order arithmetic, which is called the Homogeneous Model Theorem (HMT), and analyzed from the points of view of computability theory and reverse mathematics. Previous computability theoretic results by Lange suggested a close connection between HMT and the Atomic Model Theorem (AMT), which states that every complete atomic theory has an atomic model. The authors show that HMT and AMT are indeed equivalent in the sense of reverse mathematics, as well as in a strong computability theoretic sense and do the same for an analogous result of Peretyat'kin giving necessary and sufficient conditions for when a set of types is the type spectrum of some model.

Book On Operads  Bimodules and Analytic Functors

Download or read book On Operads Bimodules and Analytic Functors written by Nicola Gambino and published by American Mathematical Soc.. This book was released on 2017-09-25 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory of operad bimodules, that has operads as -cells, operad bimodules as -cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.

Book Hypercontractivity in Group von Neumann Algebras

Download or read book Hypercontractivity in Group von Neumann Algebras written by Marius Junge and published by American Mathematical Soc.. This book was released on 2017-09-25 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, the authors provide a combinatorial/numerical method to establish new hypercontractivity estimates in group von Neumann algebras. They illustrate their method with free groups, triangular groups and finite cyclic groups, for which they obtain optimal time hypercontractive inequalities with respect to the Markov process given by the word length and with an even integer. Interpolation and differentiation also yield general hypercontrativity for via logarithmic Sobolev inequalities. The authors' method admits further applications to other discrete groups without small loops as far as the numerical part—which varies from one group to another—is implemented and tested on a computer. The authors also develop another combinatorial method which does not rely on computational estimates and provides (non-optimal) hypercontractive inequalities for a larger class of groups/lengths, including any finitely generated group equipped with a conditionally negative word length, like infinite Coxeter groups. The authors' second method also yields hypercontractivity bounds for groups admitting a finite dimensional proper cocycle. Hypercontractivity fails for conditionally negative lengths in groups satisfying Kazhdan's property (T).

Book Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem

Download or read book Optimal Regularity and the Free Boundary in the Parabolic Signorini Problem written by Donatella Daniell and published by American Mathematical Soc.. This book was released on 2017-09-25 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give a comprehensive treatment of the parabolic Signorini problem based on a generalization of Almgren's monotonicity of the frequency. This includes the proof of the optimal regularity of solutions, classification of free boundary points, the regularity of the regular set and the structure of the singular set.