EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Motivic Homotopy Theory

    Book Details:
  • Author : Bjorn Ian Dundas
  • Publisher : Springer Science & Business Media
  • Release : 2007-07-11
  • ISBN : 3540458972
  • Pages : 228 pages

Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Book Homotopy Theory of Schemes

Download or read book Homotopy Theory of Schemes written by Fabien Morel and published by American Mathematical Soc.. This book was released on 2006 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text, the author presents a general framework for applying the standard methods from homotopy theory to the category of smooth schemes over a reasonable base scheme $k$. He defines the homotopy category $h(\mathcal{E} k)$ of smooth $k$-schemes and shows that it plays the same role for smooth $k$-schemes as the classical homotopy category plays for differentiable varieties. It is shown that certain expected properties are satisfied, for example, concerning the algebraic$K$-theory of those schemes. In this way, advanced methods of algebraic topology become available in modern algebraic geometry.

Book A1 Algebraic Topology over a Field

Download or read book A1 Algebraic Topology over a Field written by Fabien Morel and published by Springer. This book was released on 2012-07-13 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.

Book The Geometry of Schemes

    Book Details:
  • Author : David Eisenbud
  • Publisher : Springer Science & Business Media
  • Release : 2006-04-06
  • ISBN : 0387226397
  • Pages : 265 pages

Download or read book The Geometry of Schemes written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.

Book Handbook of Homotopy Theory

Download or read book Handbook of Homotopy Theory written by Haynes Miller and published by CRC Press. This book was released on 2020-01-23 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Book Lecture Notes on Motivic Cohomology

Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).

Book Algebraic Cobordism

    Book Details:
  • Author : Marc Levine
  • Publisher : Springer Science & Business Media
  • Release : 2007-02-23
  • ISBN : 3540368248
  • Pages : 252 pages

Download or read book Algebraic Cobordism written by Marc Levine and published by Springer Science & Business Media. This book was released on 2007-02-23 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. The book also contains some examples of computations and applications.

Book Noncommutative Motives

    Book Details:
  • Author : Gonçalo Tabuada
  • Publisher : American Mathematical Soc.
  • Release : 2015-09-21
  • ISBN : 1470423979
  • Pages : 127 pages

Download or read book Noncommutative Motives written by Gonçalo Tabuada and published by American Mathematical Soc.. This book was released on 2015-09-21 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.

Book Local Homotopy Theory

Download or read book Local Homotopy Theory written by John F. Jardine and published by Springer. This book was released on 2015-05-27 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory. Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.

Book Simplicial Homotopy Theory

Download or read book Simplicial Homotopy Theory written by Paul G. Goerss and published by Birkhäuser. This book was released on 2012-12-06 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.

Book Homotopy Theory and Arithmetic Geometry     Motivic and Diophantine Aspects

Download or read book Homotopy Theory and Arithmetic Geometry Motivic and Diophantine Aspects written by Frank Neumann and published by Springer Nature. This book was released on 2021-09-29 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.

Book Surveys on Recent Developments in Algebraic Geometry

Download or read book Surveys on Recent Developments in Algebraic Geometry written by Izzet Coskun and published by American Mathematical Soc.. This book was released on 2017-07-12 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The algebraic geometry community has a tradition of running a summer research institute every ten years. During these influential meetings a large number of mathematicians from around the world convene to overview the developments of the past decade and to outline the most fundamental and far-reaching problems for the next. The meeting is preceded by a Bootcamp aimed at graduate students and young researchers. This volume collects ten surveys that grew out of the Bootcamp, held July 6–10, 2015, at University of Utah, Salt Lake City, Utah. These papers give succinct and thorough introductions to some of the most important and exciting developments in algebraic geometry in the last decade. Included are descriptions of the striking advances in the Minimal Model Program, moduli spaces, derived categories, Bridgeland stability, motivic homotopy theory, methods in characteristic and Hodge theory. Surveys contain many examples, exercises and open problems, which will make this volume an invaluable and enduring resource for researchers looking for new directions.

Book Interactions between Homotopy Theory and Algebra

Download or read book Interactions between Homotopy Theory and Algebra written by Luchezar L. Avramov and published by American Mathematical Soc.. This book was released on 2007 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on talks presented at the Summer School on Interactions between Homotopy theory and Algebra held at the University of Chicago in the summer of 2004. The goal of this book is to create a resource for background and for current directions of research related to deep connections between homotopy theory and algebra, including algebraic geometry, commutative algebra, and representation theory. The articles in this book are aimed at the audience of beginning researchers with varied mathematical backgrounds and have been written with both the quality of exposition and the accessibility to novices in mind.

Book Representation Theory and Beyond

Download or read book Representation Theory and Beyond written by Jan Šťovíček and published by American Mathematical Soc.. This book was released on 2020-11-13 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop and 18th International Conference on Representations of Algebras (ICRA 2018) held from August 8–17, 2018, in Prague, Czech Republic. It presents several themes of contemporary representation theory together with some new tools, such as stable ∞ ∞-categories, stable derivators, and contramodules. In the first part, expanded lecture notes of four courses delivered at the workshop are presented, covering the representation theory of finite sets with correspondences, geometric theory of quiver Grassmannians, recent applications of contramodules to tilting theory, as well as symmetries in the representation theory over an abstract stable homotopy theory. The second part consists of six more-advanced papers based on plenary talks of the conference, presenting selected topics from contemporary representation theory: recollements and purity, maximal green sequences, cohomological Hall algebras, Hochschild cohomology of associative algebras, cohomology of local selfinjective algebras, and the higher Auslander–Reiten theory studied via homotopy theory.

Book Homotopy Theory of Higher Categories

Download or read book Homotopy Theory of Higher Categories written by Carlos Simpson and published by Cambridge University Press. This book was released on 2011-10-20 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.

Book Motivic Homotopy Theory and Refined Enumerative Geometry

Download or read book Motivic Homotopy Theory and Refined Enumerative Geometry written by Federico Binda and published by American Mathematical Soc.. This book was released on 2020-03-09 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop on Motivic Homotopy Theory and Refined Enumerative Geometry, held from May 14–18, 2018, at the Universität Duisburg-Essen, Essen, Germany. It constitutes an accessible yet swift introduction to a new and active area within algebraic geometry, which connects well with classical intersection theory. Combining both lecture notes aimed at the graduate student level and research articles pointing towards the manifold promising applications of this refined approach, it broadly covers refined enumerative algebraic geometry.

Book Algebraic Cycles and Motives  Volume 1

Download or read book Algebraic Cycles and Motives Volume 1 written by Jan Nagel and published by Cambridge University Press. This book was released on 2007-05-03 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2007 book is a self-contained account of the subject of algebraic cycles and motives.