Download or read book Finite Elements in Vector Lattices written by Martin R. Weber and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-08-20 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is the first systematical treatment of the theory of finite elements in Archimedean vector lattices and contains the results known on this topic up to the year 2013. It joins all important contributions achieved by a series of mathematicians that can only be found in scattered in literature.
Download or read book Elements of Functional Analysis written by Francis Hirsch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamental function spaces and their duals, explores operator theory and finally develops the theory of distributions up to significant applications such as Sobolev spaces and Dirichlet problems. Includes an assortment of well formulated exercises, with answers and hints collected at the end of the book.
Download or read book Notes on Real Analysis and Measure Theory written by Alexander Kharazishvili and published by Springer Nature. This book was released on 2022-09-23 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph gives the reader an up-to-date account of the fine properties of real-valued functions and measures. The unifying theme of the book is the notion of nonmeasurability, from which one gets a full understanding of the structure of the subsets of the real line and the maps between them. The material covered in this book will be of interest to a wide audience of mathematicians, particularly to those working in the realm of real analysis, general topology, and probability theory. Set theorists interested in the foundations of real analysis will find a detailed discussion about the relationship between certain properties of the real numbers and the ZFC axioms, Martin's axiom, and the continuum hypothesis.
Download or read book Functional Analysis Surveys and Recent Results written by and published by Elsevier. This book was released on 1977-01-01 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Analysis: Surveys and Recent Results
Download or read book A Course in Functional Analysis and Measure Theory written by Vladimir Kadets and published by Springer. This book was released on 2018-07-10 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
Download or read book Analysis I written by Roger Godement and published by Springer Science & Business Media. This book was released on 2004 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.
Download or read book Harmonic Analysis on Semigroups written by C. van den Berg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourier transform and the Laplace transform of a positive measure share, together with its moment sequence, a positive definiteness property which under certain regularity assumptions is characteristic for such expressions. This is formulated in exact terms in the famous theorems of Bochner, Bernstein-Widder and Hamburger. All three theorems can be viewed as special cases of a general theorem about functions qJ on abelian semigroups with involution (S, +, *) which are positive definite in the sense that the matrix (qJ(sJ + Sk» is positive definite for all finite choices of elements St, . . . , Sn from S. The three basic results mentioned above correspond to (~, +, x* = -x), ([0, 00[, +, x* = x) and (No, +, n* = n). The purpose of this book is to provide a treatment of these positive definite functions on abelian semigroups with involution. In doing so we also discuss related topics such as negative definite functions, completely mono tone functions and Hoeffding-type inequalities. We view these subjects as important ingredients of harmonic analysis on semigroups. It has been our aim, simultaneously, to write a book which can serve as a textbook for an advanced graduate course, because we feel that the notion of positive definiteness is an important and basic notion which occurs in mathematics as often as the notion of a Hilbert space.
Download or read book Analysis and Quantum Groups written by Lars Tuset and published by Springer Nature. This book was released on 2022-07-27 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a completely self-contained introduction to the elaborate theory of locally compact quantum groups, bringing the reader to the frontiers of present-day research. The exposition includes a substantial amount of material on functional analysis and operator algebras, subjects which in themselves have become increasingly important with the advent of quantum information theory. In particular, the rather unfamiliar modular theory of weights plays a crucial role in the theory, due to the presence of ‘Haar integrals’ on locally compact quantum groups, and is thus treated quite extensively The topics covered are developed independently, and each can serve either as a separate course in its own right or as part of a broader course on locally compact quantum groups. The second part of the book covers crossed products of coactions, their relation to subfactors and other types of natural products such as cocycle bicrossed products, quantum doubles and doublecrossed products. Induced corepresentations, Galois objects and deformations of coactions by cocycles are also treated. Each section is followed by a generous supply of exercises. To complete the book, an appendix is provided on topology, measure theory and complex function theory.
Download or read book Real Analysis written by Gerald B. Folland and published by John Wiley & Sons. This book was released on 2013-06-11 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.
Download or read book Functional Analysis written by R.E. Edwards and published by Courier Corporation. This book was released on 2012-10-25 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book contains an enormous amount of information — mathematical, bibliographical and historical — interwoven with some outstanding heuristic discussions." — Mathematical Reviews. In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the end of each chapter. Beginning with a chapter of preliminaries on set theory and topology, Dr. Edwards then presents detailed, in-depth discussions of vector spaces and topological vector spaces, the Hahn-Banach theorem (including applications to potential theory, approximation theory, game theory, and other fields) and fixed-point theorems. Subsequent chapters focus on topological duals of certain spaces: radon measures, distribution and linear partial differential equations, open mapping and closed graph theorems, boundedness principles, duality theory, the theory of compact operators and the Krein-Milman theorem and its applications to commutative harmonic analysis. Clearly and concisely written, Dr. Edwards's book offers rewarding reading to mathematicians and physicists with an interest in the important field of functional analysis. Because of the broad scope of its coverage, this volume will be especially valuable to the reader with a basic knowledge of functional analysis who wishes to learn about parts of the subject other than his own specialties. A comprehensive 32-page bibliography supplies a rich source of references to the basic literature.
Download or read book Mutational Analysis written by Thomas Lorenz and published by Springer. This book was released on 2010-05-29 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear structure. This book generalizes ordinary differential equations beyond the borders of vector spaces with a focus on the well-posed Cauchy problem in finite time intervals. Here are some of the examples: - Feedback evolutions of compact subsets of the Euclidean space - Birth-and-growth processes of random sets (not necessarily convex) - Semilinear evolution equations - Nonlocal parabolic differential equations - Nonlinear transport equations for Radon measures - A structured population model - Stochastic differential equations with nonlocal sample dependence and how they can be coupled in systems immediately - due to the joint framework of Mutational Analysis. Finally, the book offers new tools for modelling.
Download or read book Canadian Journal of Mathematics written by and published by . This book was released on 1966 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Spectral Analysis of Quantum Hamiltonians written by Rafael Benguria and published by Springer Science & Business Media. This book was released on 2012-06-30 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains surveys as well as research articles broadly centered on spectral analysis. Topics range from spectral continuity for magnetic and pseudodifferential operators to localization in random media, from the stability of matter to properties of Aharonov-Bohm and Quantum Hall Hamiltonians, from waveguides and resonances to supersymmetric models and dissipative fermion systems. This is the first of a series of volumes reporting every two years on recent progress in spectral theory.
Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 1226 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Recent Applications of Harmonic Analysis to Function Spaces Differential Equations and Data Science written by Isaac Pesenson and published by Birkhäuser. This book was released on 2017-08-09 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge–Walsh theorem for the oblique derivative problem of physical geodesy.
Download or read book Convex Analysis and Its Applications written by A. Auslender and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Boundary Element Analysis written by Martin Schanz and published by Springer Science & Business Media. This book was released on 2007-04-29 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains eleven contributions on boundary integral equation and boundary element methods. Beside some historical and more analytical aspects in the formulation and analysis of boundary integral equations, modern fast boundary element methods are also described and analyzed from a mathematical point of view. In addition, the book presents engineering and industrial applications that show the ability of boundary element methods to solve challenging problems from different fields.