Download or read book Elliptically Contoured Models in Statistics and Portfolio Theory written by Arjun K. Gupta and published by Springer Science & Business Media. This book was released on 2013-09-07 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elliptically Contoured Models in Statistics and Portfolio Theory fully revises the first detailed introduction to the theory of matrix variate elliptically contoured distributions. There are two additional chapters, and all the original chapters of this classic text have been updated. Resources in this book will be valuable for researchers, practitioners, and graduate students in statistics and related fields of finance and engineering. Those interested in multivariate statistical analysis and its application to portfolio theory will find this text immediately useful. In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Elliptical distributions have also increased their popularity in finance because of the ability to model heavy tails usually observed in real data. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. A noteworthy function of this book is the collection of the most important results on the theory of matrix variate elliptically contoured distributions that were previously only available in the journal-based literature. The content is organized in a unified manner that can serve an a valuable introduction to the subject.
Download or read book A Test for the Weights of the Global Minimum Variance Portfolio in an Elliptical Model written by Taras Bodnar and published by . This book was released on 2004 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quantitative Financial Risk Management written by Constantin Zopounidis and published by John Wiley & Sons. This book was released on 2015-05-18 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Guide to Quantitative Financial Risk Management Written by an international team of experts in the field, Quantitative Financial Risk Management: Theory and Practice provides an invaluable guide to the most recent and innovative research on the topics of financial risk management, portfolio management, credit risk modeling, and worldwide financial markets. This comprehensive text reviews the tools and concepts of financial management that draw on the practices of economics, accounting, statistics, econometrics, mathematics, stochastic processes, and computer science and technology. Using the information found in Quantitative Financial Risk Management can help professionals to better manage, monitor, and measure risk, especially in today's uncertain world of globalization, market volatility, and geo-political crisis. Quantitative Financial Risk Management delivers the information, tools, techniques, and most current research in the critical field of risk management. This text offers an essential guide for quantitative analysts, financial professionals, and academic scholars.
Download or read book Asset Allocation and International Investments written by G. Gregoriou and published by Springer. This book was released on 2006-11-17 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book relates to strategic asset allocation for institutional investors. It consists of a collection of edited papers from academics worldwide on the latest developments in asset allocation, portfolio management and international investments. These expert studies can improve the risk and return characteristics of your investment portfolio.
Download or read book Smart Beta written by Romedius Troberg and published by Anchor Academic Publishing (aap_verlag). This book was released on 2015-03-25 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt: In economics, each and every rational decision made is supposed to maximize individual utility. This approach especially applies to the investor in financial goods. In accordance with neoclassical utility optimization, the individual investors are supposed to be willing to exchange investment good in order to maximize their expected future return. This approach anticipates every individual investor to try and estimate the future cash flows of the investment in order to evaluate its current value. Hence, trades at every stock exchange are to be executed at all times where you have two investors differing in their estimation of the intrinsic value of an investment product. As a consequence, every investor is supposed to create a portfolio with assets that in turn maximize his/her expected return. Every investor is supposed to make an individual and rational attempt to maximize his/her utility and to behave in a risk-averse manner. However, according to the neoclassical theory, it is not possible to gain more from an investment than the market does, as long as markets are efficient. Financial markets can be seen as the most efficient markets, if not the only efficient markets in real economy, as, in the market context, information is transferred the fastest and prices are thus adopted nearly instantly. Nevertheless, all investors at the stock exchanges try to make money by using their individual knowledge in order to gain something from investing in some assets. They have of course, at the same time, the possibility to follow the market themselves or to try to bet against the market. Every investor hence always faces the question of whether to trade on the market with his/her own individual knowledge in order to gain some additional utility, or to simply attempt to do the same as the whole market and follow the belief of the market at a whole. The question thus arises of what exactly efficient fund management looks like. This paper will discuss several possibilities which arise in literature and in the real economy when thinking about fund management, and will discuss the rather new concept of “Smart Beta” investments, in particular. The focus of this paper thus lies in the question of whether smart beta concepts serve as potential superior alternatives to the classical passive investment products.
Download or read book Matrix Variate Distributions written by A K Gupta and published by CRC Press. This book was released on 2018-05-02 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful in physics, economics, psychology, and other fields, random matrices play an important role in the study of multivariate statistical methods. Until now, however, most of the material on random matrices could only be found scattered in various statistical journals. Matrix Variate Distributions gathers and systematically presents most of the recent developments in continuous matrix variate distribution theory and includes new results. After a review of the essential background material, the authors investigate the range of matrix variate distributions, including: matrix variate normal distribution Wishart distribution Matrix variate t-distribution Matrix variate beta distribution F-distribution Matrix variate Dirichlet distribution Matrix quadratic forms With its inclusion of new results, Matrix Variate Distributions promises to stimulate further research and help advance the field of multivariate statistical analysis.
Download or read book Financial Risk Modelling and Portfolio Optimization with R written by Bernhard Pfaff and published by John Wiley & Sons. This book was released on 2016-08-16 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.
Download or read book Portfolio Analysis written by John P. Dickinson and published by Saxon House Lexington Mass.. This book was released on 1974 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book High Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.
Download or read book Handbook of Matrices written by Helmut L?tkepohl and published by . This book was released on 1996-11-05 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrices are used in many areas including statistics, natural sciences, econometrics, maths & engineering. This book provides a collection of results for easy reference in one source, along with a comprehensive dictionary of matrices & related terms.
Download or read book Efficient Asset Management written by Richard O. Michaud and published by Oxford University Press. This book was released on 2008-03-03 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: In spite of theoretical benefits, Markowitz mean-variance (MV) optimized portfolios often fail to meet practical investment goals of marketability, usability, and performance, prompting many investors to seek simpler alternatives. Financial experts Richard and Robert Michaud demonstrate that the limitations of MV optimization are not the result of conceptual flaws in Markowitz theory but unrealistic representation of investment information. What is missing is a realistic treatment of estimation error in the optimization and rebalancing process. The text provides a non-technical review of classical Markowitz optimization and traditional objections. The authors demonstrate that in practice the single most important limitation of MV optimization is oversensitivity to estimation error. Portfolio optimization requires a modern statistical perspective. Efficient Asset Management, Second Edition uses Monte Carlo resampling to address information uncertainty and define Resampled Efficiency (RE) technology. RE optimized portfolios represent a new definition of portfolio optimality that is more investment intuitive, robust, and provably investment effective. RE rebalancing provides the first rigorous portfolio trading, monitoring, and asset importance rules, avoiding widespread ad hoc methods in current practice. The Second Edition resolves several open issues and misunderstandings that have emerged since the original edition. The new edition includes new proofs of effectiveness, substantial revisions of statistical estimation, extensive discussion of long-short optimization, and new tools for dealing with estimation error in applications and enhancing computational efficiency. RE optimization is shown to be a Bayesian-based generalization and enhancement of Markowitz's solution. RE technology corrects many current practices that may adversely impact the investment value of trillions of dollars under current asset management. RE optimization technology may also be useful in other financial optimizations and more generally in multivariate estimation contexts of information uncertainty with Bayesian linear constraints. Michaud and Michaud's new book includes numerous additional proposals to enhance investment value including Stein and Bayesian methods for improved input estimation, the use of portfolio priors, and an economic perspective for asset-liability optimization. Applications include investment policy, asset allocation, and equity portfolio optimization. A simple global asset allocation problem illustrates portfolio optimization techniques. A final chapter includes practical advice for avoiding simple portfolio design errors. With its important implications for investment practice, Efficient Asset Management 's highly intuitive yet rigorous approach to defining optimal portfolios will appeal to investment management executives, consultants, brokers, and anyone seeking to stay abreast of current investment technology. Through practical examples and illustrations, Michaud and Michaud update the practice of optimization for modern investment management.
Download or read book Loss Models written by Stuart A. Klugman and published by John Wiley & Sons. This book was released on 2012-01-25 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: An update of one of the most trusted books on constructing and analyzing actuarial models Written by three renowned authorities in the actuarial field, Loss Models, Third Edition upholds the reputation for excellence that has made this book required reading for the Society of Actuaries (SOA) and Casualty Actuarial Society (CAS) qualification examinations. This update serves as a complete presentation of statistical methods for measuring risk and building models to measure loss in real-world events. This book maintains an approach to modeling and forecasting that utilizes tools related to risk theory, loss distributions, and survival models. Random variables, basic distributional quantities, the recursive method, and techniques for classifying and creating distributions are also discussed. Both parametric and non-parametric estimation methods are thoroughly covered along with advice for choosing an appropriate model. Features of the Third Edition include: Extended discussion of risk management and risk measures, including Tail-Value-at-Risk (TVaR) New sections on extreme value distributions and their estimation Inclusion of homogeneous, nonhomogeneous, and mixed Poisson processes Expanded coverage of copula models and their estimation Additional treatment of methods for constructing confidence regions when there is more than one parameter The book continues to distinguish itself by providing over 400 exercises that have appeared on previous SOA and CAS examinations. Intriguing examples from the fields of insurance and business are discussed throughout, and all data sets are available on the book's FTP site, along with programs that assist with conducting loss model analysis. Loss Models, Third Edition is an essential resource for students and aspiring actuaries who are preparing to take the SOA and CAS preliminary examinations. It is also a must-have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with loss and risk models in their everyday work. To explore our additional offerings in actuarial exam preparation visit www.wiley.com/go/actuarialexamprep.
Download or read book Financial Signal Processing and Machine Learning written by Ali N. Akansu and published by John Wiley & Sons. This book was released on 2016-04-21 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.
Download or read book Handbook of Portfolio Construction written by John B. Guerard, Jr. and published by Springer Science & Business Media. This book was released on 2009-12-12 with total page 796 pages. Available in PDF, EPUB and Kindle. Book excerpt: Portfolio construction is fundamental to the investment management process. In the 1950s, Harry Markowitz demonstrated the benefits of efficient diversification by formulating a mathematical program for generating the "efficient frontier" to summarize optimal trade-offs between expected return and risk. The Markowitz framework continues to be used as a basis for both practical portfolio construction and emerging research in financial economics. Such concepts as the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT), for example, provide the foundation for setting benchmarks, for predicting returns and risk, and for performance measurement. This volume showcases original essays by some of today’s most prominent academics and practitioners in the field on the contemporary application of Markowitz techniques. Covering a wide spectrum of topics, including portfolio selection, data mining tests, and multi-factor risk models, the book presents a comprehensive approach to portfolio construction tools, models, frameworks, and analyses, with both practical and theoretical implications.
Download or read book A Signal Processing Perspective on Financial Engineering written by Yiyong Feng and published by . This book was released on 2016 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial engineering and electrical engineering are seemingly different areas that share strong underlying connections. Both areas rely on statistical analysis and modeling of systems; either modeling the financial markets or modeling wireless communication channels. Having a model of reality allows us to make predictions and to optimize the strategies. It is as important to optimize our investment strategies in a financial market as it is to optimize the signal transmitted by an antenna in a wireless link. This monograph provides a survey of financial engineering from a signal processing perspective, that is, it reviews financial modeling, the design of quantitative investment strategies, and order execution with comparison to seemingly different problems in signal processing and communication systems, such as signal modeling, filter/beamforming design, network scheduling, and power allocation.
Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Download or read book Handbook Of Heavy tailed Distributions In Asset Management And Risk Management written by Michele Leonardo Bianchi and published by World Scientific. This book was released on 2019-03-08 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of heavy-tailed distributions allows researchers to represent phenomena that occasionally exhibit very large deviations from the mean. The dynamics underlying these phenomena is an interesting theoretical subject, but the study of their statistical properties is in itself a very useful endeavor from the point of view of managing assets and controlling risk. In this book, the authors are primarily concerned with the statistical properties of heavy-tailed distributions and with the processes that exhibit jumps. A detailed overview with a Matlab implementation of heavy-tailed models applied in asset management and risk managements is presented. The book is not intended as a theoretical treatise on probability or statistics, but as a tool to understand the main concepts regarding heavy-tailed random variables and processes as applied to real-world applications in finance. Accordingly, the authors review approaches and methodologies whose realization will be useful for developing new methods for forecasting of financial variables where extreme events are not treated as anomalies, but as intrinsic parts of the economic process.