Download or read book Fixed Point Theory and Applications written by Ravi P. Agarwal and published by Cambridge University Press. This book was released on 2001-03-22 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
Download or read book Fixed Point Theory and Its Applications to Real World Problems written by Anita Tomar and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fixed-point theory initially emerged in the article demonstrating existence of solutions of differential equations, which appeared in the second quarter of the 18th century (Joseph Liouville, 1837). Later on, this technique was improved as a method of successive approximations (Charles Emile Picard, 1890) which was extracted and abstracted as a fixed-point theorem in the framework of complete normed space (Stefan Banach, 1922). It ensures presence as well as uniqueness of a fixed point, gives an approximate technique to really locate the fixed point and the a priori and a posteriori estimates for the rate of convergence. It is an essential device in the theory of metric spaces. Subsequently, it is stated that fixed-point theory is initiated by Stefan Banach. Fixed-point theorems give adequate conditions under which there exists a fixed point for a given function and enable us to ensure the existence of a solution of the original problem. In an extensive variety of scientific issues, beginning from different branches of mathematics, the existence of a solution is comparable to the existence of a fixed point for a suitable mapping. The book "Fixed Point Theory & its Applications to Real World Problems" is an endeavour to present results in fixed point theory which are extensions, improvements and generalizations of classical and recent results in this area and touches on distinct research directions within the metric fixed-point theory. It provides new openings for further exploration and makes for an easily accessible source of knowledge. This book is apposite for young researchers who want to pursue their research in fixed-point theory and is the latest in the field, giving new techniques for the existence of a superior fixed point, a fixed point, a near fixed point, a fixed circle, a near fixed interval circle, a fixed disc, a near fixed interval disc, a coincidence point, a common fixed point, a coupled common fixed point, amiable fixed sets, strong coupled fixed points and so on, utilizing minimal conditions. It offers novel applications besides traditional applications which are applicable to real world problems. The book is self-contained and unified which will serve as a reference book to researchers who are in search of novel ideas. It will be a valued addition to the library"--
Download or read book Fixed Point Theory in Ordered Sets and Applications written by Siegfried Carl and published by Springer Science & Business Media. This book was released on 2010-11-17 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a unified and comprehensive treatment of an order-theoretic fixed point theory in partially ordered sets and its various useful interactions with topological structures. The material progresses systematically, by presenting the preliminaries before moving to more advanced topics. In the treatment of the applications a wide range of mathematical theories and methods from nonlinear analysis and integration theory are applied; an outline of which has been given an appendix chapter to make the book self-contained. Graduate students and researchers in nonlinear analysis, pure and applied mathematics, game theory and mathematical economics will find this book useful.
Download or read book Fixed Point Theory for Lipschitzian type Mappings with Applications written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.
Download or read book Topics in Fixed Point Theory written by Saleh Almezel and published by Springer Science & Business Media. This book was released on 2013-10-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland’s variational principle.
Download or read book Metric Fixed Point Theory written by Pradip Debnath and published by Springer Nature. This book was released on 2022-01-04 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects chapters on contemporary topics on metric fixed point theory and its applications in science, engineering, fractals, and behavioral sciences. Chapters contributed by renowned researchers from across the world, this book includes several useful tools and techniques for the development of skills and expertise in the area. The book presents the study of common fixed points in a generalized metric space and fixed point results with applications in various modular metric spaces. New insight into parametric metric spaces as well as study of variational inequalities and variational control problems have been included.
Download or read book Topics in Metric Fixed Point Theory written by Kazimierz Goebel and published by Cambridge University Press. This book was released on 1990 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metric Fixed Point Theory has proved a flourishing area of research for many mathematicians. This book aims to offer the mathematical community an accessible, self-contained account which can be used as an introduction to the subject and its development. It will be understandable to a wide audience, including non-specialists, and provide a source of examples, references and new approaches for those currently working in the subject.
Download or read book Fixed Point Theorems and Applications written by Vittorino Pata and published by Springer Nature. This book was released on 2019-09-22 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two main parts. The first, which is more theoretical, develops the main abstract theorems on the existence and uniqueness of fixed points of maps. In turn, the second part focuses on applications, covering a large variety of significant results ranging from ordinary differential equations in Banach spaces, to partial differential equations, operator theory, functional analysis, measure theory, and game theory. A final section containing 50 problems, many of which include helpful hints, rounds out the coverage. Intended for Master’s and PhD students in Mathematics or, more generally, mathematically oriented subjects, the book is designed to be largely self-contained, although some mathematical background is needed: readers should be familiar with measure theory, Banach and Hilbert spaces, locally convex topological vector spaces and, in general, with linear functional analysis.
Download or read book Fixed Point Theory written by Andrzej Granas and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS
Download or read book Fixed Point Theory in Probabilistic Metric Spaces written by O. Hadzic and published by Springer Science & Business Media. This book was released on 2001-11-30 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, which is a very dynamic area of mathematical research. A primary aim of this monograph is to stimulate interest among scientists and students in this fascinating field. The text is self-contained for a reader with a modest knowledge of the metric fixed point theory. Several themes run through this book. The first is the theory of triangular norms (t-norms), which is closely related to fixed point theory in probabilistic metric spaces. Its recent development has had a strong influence upon the fixed point theory in probabilistic metric spaces. In Chapter 1 some basic properties of t-norms are presented and several special classes of t-norms are investigated. Chapter 2 is an overview of some basic definitions and examples from the theory of probabilistic metric spaces. Chapters 3, 4, and 5 deal with some single-valued and multi-valued probabilistic versions of the Banach contraction principle. In Chapter 6, some basic results in locally convex topological vector spaces are used and applied to fixed point theory in vector spaces. Audience: The book will be of value to graduate students, researchers, and applied mathematicians working in nonlinear analysis and probabilistic metric spaces.
Download or read book Advanced Fixed Point Theory for Economics written by Andrew McLennan and published by Springer. This book was released on 2018-07-03 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the central aspect of fixed point theory – the topological fixed point index – to maximal generality, emphasizing correspondences and other aspects of the theory that are of special interest to economics. Numerous topological consequences are presented, along with important implications for dynamical systems. The book assumes the reader has no mathematical knowledge beyond that which is familiar to all theoretical economists. In addition to making the material available to a broad audience, avoiding algebraic topology results in more geometric and intuitive proofs. Graduate students and researchers in economics, and related fields in mathematics and computer science, will benefit from this book, both as a useful reference and as a well-written rigorous exposition of foundational mathematics. Numerous problems sketch key results from a wide variety of topics in theoretical economics, making the book an outstanding text for advanced graduate courses in economics and related disciplines.
Download or read book Advances in Metric Fixed Point Theory and Applications written by Yeol Je Cho and published by Springer Nature. This book was released on 2021-06-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
Download or read book Fixed Point Theorems with Applications to Economics and Game Theory written by Kim C. Border and published by Cambridge University Press. This book was released on 1985 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores fixed point theorems and its uses in economics, co-operative and noncooperative games.
Download or read book Recent Advances in Fixed Point Theory and Applications written by Umesh C. Gairola and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed point theory is a growing and exciting branch of mathematics with a variety of wide applications in biological and mathematical sciences, proposing newer applications in discrete dynamics and super fractals. The present endeavour is to report the latest trend in metric fixed point theory, emphasising newer applications in numerical analysis, discrete dynamics and fractal graphics, besides traditional applications. The book is useful to a large class of readers interested in analysis, applicable mathematics and fractal graphics. The articles have been selected carefully so that the book is useful for sophomores up to senior researchers looking for new material and new ideas in the existence of fixed points, new applications and survey articles. A few chapters included herein are formal in nature and suggest new directions of research in this area, which are especially useful to beginners in the field. The book is divided into two parts: Part I contains surveys and existence and convergence results. In Part II (Applications), various applications of fixed point theory to initial value problems, local attractivity of certain functional integral equation solutions, fractals and super-fractals, and solving equations in numerical praxis have been discussed. The present book, which is dedicated to Professor Shyam Lal Singh, consists of articles contributed by outstanding workers all over the world. Of course, some of the articles were selected from the Symposium on Fixed Point Theory and Applications (dedicated to him) held during the 19th Annual Conference Of India (10-12 November 2016), organised by Pauri Garhwal of the Department of Mathematics, H N B Garhwal (Central) University.
Download or read book Fixed Point Theory in Distance Spaces written by William Kirk and published by Springer. This book was released on 2014-10-23 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a monograph on fixed point theory, covering the purely metric aspects of the theory–particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler’s well known set-valued extension of that theorem, the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi’s theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.
Download or read book Fixed Point Theory and Best Approximation The KKM map Principle written by S.P. Singh and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this volume is to make available to a large audience recent material in nonlinear functional analysis that has not been covered in book format before. Here, several topics of current and growing interest are systematically presented, such as fixed point theory, best approximation, the KKM-map principle, and results related to optimization theory, variational inequalities and complementarity problems. Illustrations of suitable applications are given, the links between results in various fields of research are highlighted, and an up-to-date bibliography is included to assist readers in further studies. Audience: This book will be of interest to graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations and expansions, convex sets and related geometric topics and game theory.
Download or read book Fixed Point Theory for Decomposable Sets written by Andrzej Fryszkowski and published by Springer Science & Business Media. This book was released on 2006-02-21 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decomposable sets since T. R. Rockafellar in 1968 are one of basic notions in nonlinear analysis, especially in the theory of multifunctions. A subset K of measurable functions is called decomposable if (Q) for all and measurable A. This book attempts to show the present stage of "decomposable analysis" from the point of view of fixed point theory. The book is split into three parts, beginning with the background of functional analysis, proceeding to the theory of multifunctions and lastly, the decomposability property. Mathematicians and students working in functional, convex and nonlinear analysis, differential inclusions and optimal control should find this book of interest. A good background in fixed point theory is assumed as is a background in topology.