Download or read book A Simple Local Least Squares Approach for Estimating the Regression Function of Binary Response Data and Related Data driven Bandwidth Selection Procedures written by Aaron Kenji Aragaki and published by . This book was released on 1995 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Comparison of the EM Monte Carlo EM and Gibbs Sampling Algorithms for a Class of Hidden Markov Models with Application to a DNA Sequencing Problem written by Douglas Ivan Grove and published by . This book was released on 1996 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 1999 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Current Index to Statistics Applications Methods and Theory written by and published by . This book was released on 1997 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.
Download or read book Image Processing and Jump Regression Analysis written by Peihua Qiu and published by John Wiley & Sons. This book was released on 2005-05-20 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first text to bridge the gap between image processing andjump regression analysis Recent statistical tools developed to estimate jump curves andsurfaces have broad applications, specifically in the area of imageprocessing. Often, significant differences in technicalterminologies make communication between the disciplines of imageprocessing and jump regression analysis difficult. Ineasy-to-understand language, Image Processing and JumpRegression Analysis builds a bridge between the worlds ofcomputer graphics and statistics by addressing both the connectionsand the differences between these two disciplines. The authorprovides a systematic analysis of the methodology behindnonparametric jump regression analysis by outlining procedures thatare easy to use, simple to compute, and have proven statisticaltheory behind them. Key topics include: Conventional smoothing procedures Estimation of jump regression curves Estimation of jump location curves of regression surfaces Jump-preserving surface reconstruction based on localsmoothing Edge detection in image processing Edge-preserving image restoration With mathematical proofs kept to a minimum, this book isuniquely accessible to a broad readership. It may be used as aprimary text in nonparametric regression analysis and imageprocessing as well as a reference guide for academicians andindustry professionals focused on image processing or curve/surfaceestimation.
Download or read book Linear Regression Analysis written by Xin Yan and published by World Scientific. This book was released on 2009 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.
Download or read book Regression Modeling written by Michael Panik and published by CRC Press. This book was released on 2009-04-30 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least square
Download or read book Dissertation Abstracts International written by and published by . This book was released on 1999 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Practical Introduction to Regression Discontinuity Designs written by Matias D. Cattaneo and published by Cambridge University Press. This book was released on 2020-02-13 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Element and its accompanying second Element, A Practical Introduction to Regression Discontinuity Designs: Extensions, Matias Cattaneo, Nicolás Idrobo, and Rocıìo Titiunik provide an accessible and practical guide for the analysis and interpretation of regression discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. In this Element, the authors discuss the foundations of the canonical Sharp RD design, which has the following features: (i) the score is continuously distributed and has only one dimension, (ii) there is only one cutoff, and (iii) compliance with the treatment assignment is perfect. In the second Element, the authors discuss practical and conceptual extensions to this basic RD setup.
Download or read book Mathematical Reviews written by and published by . This book was released on 2000 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Download or read book Applied Econometrics with R written by Christian Kleiber and published by Springer Science & Business Media. This book was released on 2008-12-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Download or read book Geographically Weighted Regression written by A. Stewart Fotheringham and published by John Wiley & Sons. This book was released on 2003-02-21 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geographical Weighted Regression (GWR) is a new local modelling technique for analysing spatial analysis. This technique allows local as opposed to global models of relationships to be measured and mapped. This is the first and only book on this technique, offering comprehensive coverage on this new 'hot' topic in spatial analysis. * Provides step-by-step examples of how to use the GWR model using data sets and examples on issues such as house price determinants, educational attainment levels and school performance statistics * Contains a broad discussion of and basic concepts on GWR through to ideas on statistical inference for GWR models * uniquely features accompanying author-written software that allows users to undertake sophisticated and complex forms of GWR within a user-friendly, Windows-based, front-end (see book for details).
Download or read book Handbook of Computational Statistics written by James E. Gentle and published by Springer. This book was released on 2017-05-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.
Download or read book Spatial Analysis Methods and Practice written by George Grekousis and published by Cambridge University Press. This book was released on 2020-06-11 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory overview of spatial analysis and statistics through GIS, including worked examples and critical analysis of results.
Download or read book Generalized Additive Models written by T.J. Hastie and published by Routledge. This book was released on 2017-10-19 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.
Download or read book Smoothing Techniques written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.