Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Download or read book Econometric Analysis of Cross Section and Panel Data second edition written by Jeffrey M. Wooldridge and published by MIT Press. This book was released on 2010-10-01 with total page 1095 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Download or read book Generalized Least Squares written by Takeaki Kariya and published by John Wiley & Sons. This book was released on 2004-11-19 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generalised Least Squares adopts a concise and mathematically rigorous approach. It will provide an up-to-date self-contained introduction to the unified theory of generalized least squares estimations, adopting a concise and mathematically rigorous approach. The book covers in depth the 'lower and upper bounds approach', pioneered by the first author, which is widely regarded as a very powerful and useful tool for generalized least squares estimation, helping the reader develop their understanding of the theory. The book also contains exercises at the end of each chapter and applications to statistics, econometrics, and biometrics, enabling use for self-study or as a course text.
Download or read book Annual Report written by Iowa State University. Statistical Laboratory and published by . This book was released on 1989 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Annual Report Statistical Laboratory Iowa State University written by Iowa State University. Statistical Laboratory and published by . This book was released on 1989 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Current Index to Statistics Applications Methods and Theory written by and published by . This book was released on 1998 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.
Download or read book Longitudinal and Panel Data written by Edward W. Frees and published by Cambridge University Press. This book was released on 2004-08-16 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.
Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Download or read book Principles of Econometrics written by R. Carter Hill and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised edition of the authors' Principles of econometrics, c2011.
Download or read book Generalized Additive Models written by Simon Wood and published by CRC Press. This book was released on 2006-02-27 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.
Download or read book Econometric Models Techniques and Applications written by Michael D. Intriligator and published by Pearson. This book was released on 1996 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the theories, techniques (model- building and data collection), and applications of econometrics. KEY TOPICS: It focuses on those aspects of econometrics that are of major importance to readers and researchers interested in performing, evaluating, or understanding econometric studies in a variety of areas. It reviews matrix notation and the use of multivariate statistics; discusses the specification of the model and the development of data for its estimation; covers recent developments in econometric models, techniques, and applications; explains the estimation of single-equation models; and provides case studies of the applications of econometrics to a wide array of areas -- including traditional areas such as the estimation of demand functions and production functions, and macroeconometric models.
Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Download or read book Unit Roots Cointegration and Structural Change written by G. S. Maddala and published by Cambridge University Press. This book was released on 1998 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of unit roots, cointegration and structural change from a best-selling author.
Download or read book Regression and Other Stories written by Andrew Gelman and published by Cambridge University Press. This book was released on 2021 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.
Download or read book Comprehensive Geographic Information Systems written by and published by Elsevier. This book was released on 2017-07-21 with total page 1488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geographical Information Systems, Three Volume Set is a computer system used to capture, store, analyze and display information related to positions on the Earth’s surface. It has the ability to show multiple types of information on multiple geographical locations in a single map, enabling users to assess patterns and relationships between different information points, a crucial component for multiple aspects of modern life and industry. This 3-volumes reference provides an up-to date account of this growing discipline through in-depth reviews authored by leading experts in the field. VOLUME EDITORS Thomas J. Cova The University of Utah, Salt Lake City, UT, United States Ming-Hsiang Tsou San Diego State University, San Diego, CA, United States Georg Bareth University of Cologne, Cologne, Germany Chunqiao Song University of California, Los Angeles, CA, United States Yan Song University of North Carolina at Chapel Hill, Chapel Hill, NC, United States Kai Cao National University of Singapore, Singapore Elisabete A. Silva University of Cambridge, Cambridge, United Kingdom Covers a rapidly expanding discipline, providing readers with a detailed overview of all aspects of geographic information systems, principles and applications Emphasizes the practical, socioeconomic applications of GIS Provides readers with a reliable, one-stop comprehensive guide, saving them time in searching for the information they need from different sources
Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data