Download or read book A Primer on Machine Learning Applications in Civil Engineering written by Paresh Chandra Deka and published by CRC Press. This book was released on 2019-10-28 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning has undergone rapid growth in diversification and practicality, and the repertoire of techniques has evolved and expanded. The aim of this book is to provide a broad overview of the available machine-learning techniques that can be utilized for solving civil engineering problems. The fundamentals of both theoretical and practical aspects are discussed in the domains of water resources/hydrological modeling, geotechnical engineering, construction engineering and management, and coastal/marine engineering. Complex civil engineering problems such as drought forecasting, river flow forecasting, modeling evaporation, estimation of dew point temperature, modeling compressive strength of concrete, ground water level forecasting, and significant wave height forecasting are also included. Features Exclusive information on machine learning and data analytics applications with respect to civil engineering Includes many machine learning techniques in numerous civil engineering disciplines Provides ideas on how and where to apply machine learning techniques for problem solving Covers water resources and hydrological modeling, geotechnical engineering, construction engineering and management, coastal and marine engineering, and geographical information systems Includes MATLAB® exercises
Download or read book A Primer on Reproducing Kernel Hilbert Spaces written by Jonathan H. Manton and published by . This book was released on 2015 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.
Download or read book Kernel Methods in Computational Biology written by Bernhard Schölkopf and published by MIT Press. This book was released on 2004 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed overview of current research in kernel methods and their application to computational biology.
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Download or read book Reproducing Kernel Hilbert Spaces in Probability and Statistics written by Alain Berlinet and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers theoretical questions including the latest extension of the formalism, and computational issues and focuses on some of the more fruitful and promising applications, including statistical signal processing, nonparametric curve estimation, random measures, limit theorems, learning theory and some applications at the fringe between Statistics and Approximation Theory. It is geared to graduate students in Statistics, Mathematics or Engineering, or to scientists with an equivalent level.
Download or read book Methods and Applications of Autonomous Experimentation written by Marcus Noack and published by CRC Press. This book was released on 2023-12-14 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous Experimentation is poised to revolutionize scientific experiments at advanced experimental facilities. Whereas previously, human experimenters were burdened with the laborious task of overseeing each measurement, recent advances in mathematics, machine learning and algorithms have alleviated this burden by enabling automated and intelligent decision-making, minimizing the need for human interference. Illustrating theoretical foundations and incorporating practitioners’ first-hand experiences, this book is a practical guide to successful Autonomous Experimentation. Despite the field’s growing potential, there exists numerous myths and misconceptions surrounding Autonomous Experimentation. Combining insights from theorists, machine-learning engineers and applied scientists, this book aims to lay the foundation for future research and widespread adoption within the scientific community. This book is particularly useful for members of the scientific community looking to improve their research methods but also contains additional insights for students and industry professionals interested in the future of the field.
Download or read book Hilbert Space Methods in Signal Processing written by Rodney A. Kennedy and published by Cambridge University Press. This book was released on 2013-03-07 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to Hilbert spaces, combining the theory with applications of Hilbert methods in signal processing.
Download or read book An Introduction to the Mathematical Theory of Inverse Problems written by Andreas Kirsch and published by Springer Nature. This book was released on 2021-02-15 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook introduces the reader to the area of inverse problems, vital to many fields including geophysical exploration, system identification, nondestructive testing, and ultrasonic tomography. It aims to expose the basic notions and difficulties encountered with ill-posed problems, analyzing basic properties of regularization methods for ill-posed problems via several simple analytical and numerical examples. The book also presents three special nonlinear inverse problems in detail: the inverse spectral problem, the inverse problem of electrical impedance tomography (EIT), and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness, and continuous dependence on parameters. Ultimately, the text discusses theoretical results as well as numerical procedures for the inverse problems, including many exercises and illustrations to complement coursework in mathematics and engineering. This updated text includes a new chapter on the theory of nonlinear inverse problems in response to the field’s growing popularity, as well as a new section on the interior transmission eigenvalue problem which complements the Sturm-Liouville problem and which has received great attention since the previous edition was published.
Download or read book An Introduction to the Theory of Reproducing Kernel Hilbert Spaces written by Vern I. Paulsen and published by Cambridge University Press. This book was released on 2016-04-11 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique introduction to reproducing kernel Hilbert spaces, covering the fundamental underlying theory as well as a range of applications.
Download or read book Analysis of Operators on Function Spaces written by Alexandru Aleman and published by Springer. This book was released on 2019-05-30 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
Download or read book Catherine Beneteau Alberto A Condori Constanze Liaw William T Ross and Alan A Sola written by Catherine Bénéteau: and published by American Mathematical Soc.. This book was released on 2016-12-22 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the Proceedings of the Conference on Completeness Problems, Carleson Measures, and Spaces of Analytic Functions, held from June 29–July 3, 2015, at the Institut Mittag-Leffler, Djursholm, Sweden. The conference brought together experienced researchers and promising young mathematicians from many countries to discuss recent progress made in function theory, model spaces, completeness problems, and Carleson measures. This volume contains articles covering cutting-edge research questions, as well as longer survey papers and a report on the problem session that contains a collection of attractive open problems in complex and harmonic analysis.
Download or read book Complex Analysis and Spectral Theory written by H. Garth Dales and published by American Mathematical Soc.. This book was released on 2020-02-07 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Conference on Complex Analysis and Spectral Theory, in celebration of Thomas Ransford's 60th birthday, held from May 21–25, 2018, at Laval University, Québec, Canada. Spectral theory is the branch of mathematics devoted to the study of matrices and their eigenvalues, as well as their infinite-dimensional counterparts, linear operators and their spectra. Spectral theory is ubiquitous in science and engineering because so many physical phenomena, being essentially linear in nature, can be modelled using linear operators. On the other hand, complex analysis is the calculus of functions of a complex variable. They are widely used in mathematics, physics, and in engineering. Both topics are related to numerous other domains in mathematics as well as other branches of science and engineering. The list includes, but is not restricted to, analytical mechanics, physics, astronomy (celestial mechanics), geology (weather modeling), chemistry (reaction rates), biology, population modeling, economics (stock trends, interest rates and the market equilibrium price changes). There are many other connections, and in recent years there has been a tremendous amount of work on reproducing kernel Hilbert spaces of analytic functions, on the operators acting on them, as well as on applications in physics and engineering, which arise from pure topics like interpolation and sampling. Many of these connections are discussed in articles included in this book.
Download or read book Operator Theory Functional Analysis and Applications written by M. Amélia Bastos and published by Springer Nature. This book was released on 2021-03-31 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.
Download or read book Coherent States Wavelets and Their Generalizations written by Syed Twareque Ali and published by Springer Science & Business Media. This book was released on 2013-10-30 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.
Download or read book A Primer on Hilbert Space Theory written by Carlo Alabiso and published by Springer. This book was released on 2014-10-08 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all subjects has been enriched. Moreover, a brief introduction to topological groups has been added in addition to exercises and solved problems throughout the text. With these improvements, the book can be used in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.
Download or read book Monte Carlo and Quasi Monte Carlo Methods written by Bruno Tuffin and published by Springer Nature. This book was released on 2020-05-01 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the refereed proceedings of the 13th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Rennes, France, and organized by Inria, in July 2018. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Download or read book Supervised Learning with Quantum Computers written by Maria Schuld and published by Springer. This book was released on 2018-08-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.