Download or read book A Primer of Lebesgue Integration written by H. S. Bear and published by Academic Press. This book was released on 2002 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study. Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels.
Download or read book A Primer of Lebesgue Integration written by H. S. Bear and published by Elsevier. This book was released on 2001-10-16 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study. Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels.
Download or read book Elementary Introduction to the Lebesgue Integral written by Steven G. Krantz and published by CRC Press. This book was released on 2018-04-17 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Introduction to the Lebesgue Integral is not just an excellent primer of the Lebesgue integral for undergraduate students but a valuable tool for tomorrow’s mathematicians. Since the early twentieth century, the Lebesgue integral has been a mainstay of mathematical analysis because of its important properties with respect to limits. For this reason, it is vital that mathematical students properly understand the complexities of the Lebesgue integral. However, most texts about the subject are geared towards graduate students, which makes it a challenge for instructors to properly teach and for less advanced students to learn. Ensuring that the subject is accessible for all readers, the author presents the text in a clear and concrete manner which allows readers to focus on the real line. This is important because Lebesgue integral can be challenging to understand when compared to more widely used integrals like the Riemann integral. The author also includes in the textbook abundant examples and exercises to help explain the topic. Other topics explored in greater detail are abstract measure spaces and product measures, which are treated concretely. Features: Comprehensibly written introduction to the Lebesgue integral for undergraduate students Includes many examples, figures and exercises Features a Table of Notation and Glossary to aid readers Solutions to selected exercises
Download or read book A Primer of Real Functions written by Ralph P. Boas and published by Cambridge University Press. This book was released on 1996 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a revised, updated, and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic Carus Monograph covered sets, metric spaces, continuous functions, and differentiable functions. The fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications. The book retains the informal chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is, thus, suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis. Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: e.g., the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series. This book recaptures the sense of wonder that was associated with the subject in its early days. It is a must for mathematics libraries.
Download or read book Measure Integration and a Primer on Probability Theory written by Stefano Gentili and published by Springer Nature. This book was released on 2020-11-30 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text contains detailed and complete proofs and includes instructive historical introductions to key chapters. These serve to illustrate the hurdles faced by the scholars that developed the theory, and allow the novice to approach the subject from a wider angle, thus appreciating the human side of major figures in Mathematics. The style in which topics are addressed, albeit informal, always maintains a rigorous character. The attention placed in the careful layout of the logical steps of proofs, the abundant examples and the supplementary remarks disseminated throughout all contribute to render the reading pleasant and facilitate the learning process. The exposition is particularly suitable for students of Mathematics, Physics, Engineering and Statistics, besides providing the foundation essential for the study of Probability Theory and many branches of Applied Mathematics, including the Analysis of Financial Markets and other areas of Financial Engineering.
Download or read book Measure Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.
Download or read book The Lebesgue Integral for Undergraduates written by William Johnston and published by The Mathematical Association of America. This book was released on 2015-09-25 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1902, modern function theory began when Henri Lebesgue described a new "integral calculus." His "Lebesgue integral" handles more functions than the traditional integral-so many more that mathematicians can study collections (spaces) of functions. For example, it defines a distance between any two functions in a space. This book describes these ideas in an elementary accessible way. Anyone who has mastered calculus concepts of limits, derivatives, and series can enjoy the material. Unlike any other text, this book brings analysis research topics within reach of readers even just beginning to think about functions from a theoretical point of view.
Download or read book A Primer of Real Functions written by Ralph P. Boas (Jr.) and published by . This book was released on 1972 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geometric Integration Theory written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces geometric measure theory through the notion of currents. Currents, continuous linear functionals on spaces of differential forms, are a natural language in which to formulate types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis. Motivating key ideas with examples and figures, this book is a comprehensive introduction ideal for both self-study and for use in the classroom. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for both graduate students and researchers.
Download or read book The Structure of Lebesgue Integration Theory written by George Frederick James Temple and published by . This book was released on 1971 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Real Analysis written by William C. Bauldry and published by John Wiley & Sons. This book was released on 2011-09-09 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to real analysis and its connectionto elementary calculus Bridging the gap between the development and history of realanalysis, Introduction to Real Analysis: An EducationalApproach presents a comprehensive introduction to real analysiswhile also offering a survey of the field. With its balance ofhistorical background, key calculus methods, and hands-onapplications, this book provides readers with a solid foundationand fundamental understanding of real analysis. The book begins with an outline of basic calculus, including aclose examination of problems illustrating links and potentialdifficulties. Next, a fluid introduction to real analysis ispresented, guiding readers through the basic topology of realnumbers, limits, integration, and a series of functions in naturalprogression. The book moves on to analysis with more rigorousinvestigations, and the topology of the line is presented alongwith a discussion of limits and continuity that includes unusualexamples in order to direct readers' thinking beyond intuitivereasoning and on to more complex understanding. The dichotomy ofpointwise and uniform convergence is then addressed and is followedby differentiation and integration. Riemann-Stieltjes integrals andthe Lebesgue measure are also introduced to broaden the presentedperspective. The book concludes with a collection of advancedtopics that are connected to elementary calculus, such as modelingwith logistic functions, numerical quadrature, Fourier series, andspecial functions. Detailed appendices outline key definitions and theorems inelementary calculus and also present additional proofs, projects,and sets in real analysis. Each chapter references historicalsources on real analysis while also providing proof-orientedexercises and examples that facilitate the development ofcomputational skills. In addition, an extensive bibliographyprovides additional resources on the topic. Introduction to Real Analysis: An Educational Approach isan ideal book for upper- undergraduate and graduate-level realanalysis courses in the areas of mathematics and education. It isalso a valuable reference for educators in the field of appliedmathematics.
Download or read book A User Friendly Introduction to Lebesgue Measure and Integration written by Gail S. Nelson and published by American Mathematical Soc.. This book was released on 2015-11-09 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: A User-Friendly Introduction to Lebesgue Measure and Integration provides a bridge between an undergraduate course in Real Analysis and a first graduate-level course in Measure Theory and Integration. The main goal of this book is to prepare students for what they may encounter in graduate school, but will be useful for many beginning graduate students as well. The book starts with the fundamentals of measure theory that are gently approached through the very concrete example of Lebesgue measure. With this approach, Lebesgue integration becomes a natural extension of Riemann integration. Next, -spaces are defined. Then the book turns to a discussion of limits, the basic idea covered in a first analysis course. The book also discusses in detail such questions as: When does a sequence of Lebesgue integrable functions converge to a Lebesgue integrable function? What does that say about the sequence of integrals? Another core idea from a first analysis course is completeness. Are these -spaces complete? What exactly does that mean in this setting? This book concludes with a brief overview of General Measures. An appendix contains suggested projects suitable for end-of-course papers or presentations. The book is written in a very reader-friendly manner, which makes it appropriate for students of varying degrees of preparation, and the only prerequisite is an undergraduate course in Real Analysis.
Download or read book Mathematical Analysis Tools for Engineering written by franco tomarelli and published by Società Editrice Esculapio. This book was released on 2021-09-01 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the study of ordinary differential equations and partial differential equations, ranging from elementary techniques to advanced tools. The presentation focusses on initial value problems, boundary value problems, equations with delayed argument and analysis of periodic solutions: main goals are the analysis of diffusion equation, wave equation, Laplace equation and signals. The study of relevant examples of differential models highlights the notion of well-posed problem. An expanded tutorial chapter collects the topics from basic undergraduate calculus that are used in subsequent chapters. A wide exposition concerning classical methods for solving problems related to differential equations is available: mainly separation of variables and Fourier series, with basic worked exercises. A whole chapter deals with the analytic functions of complex variable. An introduction to function spaces, distributions and basic notions of functional analysis is present. Several chapters are devoted to Fourier and Laplace transforms methods to solve boundary value problems and initial value problems for differential equations. Tools for the analysis appear gradually: first in function spaces, then in the more general framework of distributions, where a powerful arsenal of techniques allows dealing with impulsive signals and singularities in both data and solutions of differential problems. This Second Edition contains additional exercises and a new chapter concerning signals and filters analysis in connection to integral transforms.
Download or read book Handbook of Analysis and Its Foundations written by Eric Schechter and published by Academic Press. This book was released on 1996-10-24 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/
Download or read book Measure Theory written by Vladimir I. Bogachev and published by Springer Science & Business Media. This book was released on 2007-01-15 with total page 1075 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book giving an exposition of the foundations of modern measure theory offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course, and, finally, more specialized topics partly covered by more than 850 exercises with detailed hints and references. Bibliographical comments and an extensive bibliography with 2000 works covering more than a century are provided.
Download or read book A Radical Approach to Lebesgue s Theory of Integration written by David M. Bressoud and published by Cambridge University Press. This book was released on 2008-01-21 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meant for advanced undergraduate and graduate students in mathematics, this introduction to measure theory and Lebesgue integration is motivated by the historical questions that led to its development. The author tells the story of the mathematicians who wrestled with the difficulties inherent in the Riemann integral, leading to the work of Jordan, Borel, and Lebesgue.
Download or read book Principles of Digital Communication written by Bixio Rimoldi and published by Cambridge University Press. This book was released on 2016-01-21 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and accessible text teaches the fundamentals of digital communication via a top-down-reversed approach, specifically formulated for a one-semester course. The unique approach focuses on the transmission problem and develops knowledge of receivers before transmitters. In doing so it cuts straight to the heart of the digital communication problem, enabling students to learn quickly, intuitively, and with minimal background knowledge. Beginning with the decision problem faced by a decoder and going on to cover receiver designs for different channels, hardware constraints, design trade-offs, convolutional coding, Viterbi decoding, and passband communication, detail is given on system-level design as well as practical applications in engineering. All of this is supported by numerous worked examples, homework problems, and MATLAB simulation exercises to aid self-study, providing a solid basis for students to specialize in the field of digital communication and making it suitable for both traditional and flipped classroom teaching.