EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Physical MOSFET Model Applicable to Extremely Scaled CMOS IC Design

Download or read book A Physical MOSFET Model Applicable to Extremely Scaled CMOS IC Design written by Douglas Weiser and published by . This book was released on 2019-05-31 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: A process-based model (UFET) for deep-submicron bulk-silicon MOSFETs is developed and verified with numerical device simulations and measured data. The charge-based model is physical with accountings for the predominant short-channel (e.g., charge sharing, drain-induced threshold reduction and velocity saturation) and extremely scaled-technology (i.e., energy quantization and polysilicon-gate depletion) effects in MOSFETs. The key to UFET is the characterization of the bias-dependent two-dimensional regions near the source/ drain junctions which can extend over a significant fraction of the metallurgical channel length. When these two-dimensional regions near the junctions are modeled, the physical charge-sheet model can be applied to the remaining "quasi-two- dimensional" channel length to define the channel current and terminal charges, without resorting to empiricism to account for the short-channel effects. Special attention paid to continuity in the derivation of the model formalism yields a physical C-infinity model applicable to analog and digital CMOS circuit design. The small number of physical, process-based parameters simplifies the model calibration, and renders the model suitable for predictive device/circuit simulation, statistical simulations and circuit sensitivity analyses based on known or presumed process variations. Dissertation Discovery Company and University of Florida are dedicated to making scholarly works more discoverable and accessible throughout the world. This dissertation, "A Physical MOSFET Model Applicable to Extremely Scaled CMOS IC Design" by Douglas Aaron Weiser, was obtained from University of Florida and is being sold with permission from the author. A digital copy of this work may also be found in the university's institutional repository, IR@UF. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation.

Book A Physical MOSFET Model Applicable to Extremely Scaled CMOS IC Design

Download or read book A Physical MOSFET Model Applicable to Extremely Scaled CMOS IC Design written by Douglas Aaron Weiser and published by . This book was released on 1997 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book MOSFET Models for VLSI Circuit Simulation

Download or read book MOSFET Models for VLSI Circuit Simulation written by Narain D. Arora and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.

Book Fundamentals of Ultra Thin Body MOSFETs and FinFETs

Download or read book Fundamentals of Ultra Thin Body MOSFETs and FinFETs written by Jerry G. Fossum and published by Cambridge University Press. This book was released on 2013-08-29 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the theory, design and applications of FD/SOI MOSFETs and 3-D FinFETs with this concise and clear guide to FD/UTB transistors. Topics covered include short-channel effects, quantum-mechanical effects, applications of UTB devices to floating-body DRAM and conventional SRAM, and nanoscale UTB CMOS performances.

Book Charge Based MOS Transistor Modeling

Download or read book Charge Based MOS Transistor Modeling written by Christian C. Enz and published by John Wiley & Sons. This book was released on 2006-08-14 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.

Book BSIM4 and MOSFET Modeling for IC Simulation

Download or read book BSIM4 and MOSFET Modeling for IC Simulation written by Weidong Liu and published by World Scientific. This book was released on 2011 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the art of advanced MOSFET modeling for integrated circuit simulation and design. It provides the essential mathematical and physical analyses of all the electrical, mechanical and thermal effects in MOS transistors relevant to the operation of integrated circuits. Particular emphasis is placed on how the BSIM model evolved into the first ever industry standard SPICE MOSFET model for circuit simulation and CMOS technology development. The discussion covers the theory and methodology of how a MOSFET model, or semiconductor device models in general, can be implemented to be robust and efficient, turning device physics theory into a production-worthy SPICE simulation model. Special attention is paid to MOSFET characterization and model parameter extraction methodologies, making the book particularly useful for those interested or already engaged in work in the areas of semiconductor devices, compact modeling for SPICE simulation, and integrated circuit design.

Book MOSFET Modeling for Circuit Analysis and Design

Download or read book MOSFET Modeling for Circuit Analysis and Design written by Carlos Galup-Montoro and published by World Scientific. This book was released on 2007 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.

Book Analog Circuits

Download or read book Analog Circuits written by Yuping Wu and published by BoD – Books on Demand. This book was released on 2013-01-09 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The invariable motif for analog design is to explore the new circuit topologies, architectures and CAD technologies to overcome the design challenges coming from the new applications and new fabrication technologies. In this book, a new architecture for a SAR ADC is proposed to eliminate the process mismatches and minimize the errors. A collection of DG-MOSFET based analog/RFICs present the excellent performance; the automated system for a passive filter circuits design is presented with the local searching engaging; interval analysis is used to solve some problems for linear and nonlinear analog circuits and a symbolic method is proposed to solve the testability problem.

Book Development of Mosfet Models Suitable for Simulation of Analog CMOS Circuits After Hot carrier Stress

Download or read book Development of Mosfet Models Suitable for Simulation of Analog CMOS Circuits After Hot carrier Stress written by Gürsel Düzenli and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The down-scaling of device dimensions in CMOS technology will improve performance and packing density for VLSI (Very Large Scale Integration) circuits, but it will negatively effect the quaIity of the circuits. Integrated circuits (ICs) are basically classified according to the electrical function they perform. Integrated circuits performing nominally the same function, however, do not necessarily perform it equally well. The concept of quality is used to express how well the required function is performed. An operational amplifier is of higher quality İf it has a higher gain, wider frequency bandwidth, etc. These characteristics can be regarded as conformance figures. The conformance is, however, only one side of the quality. On the other side is the issue of how Iong the device or circuit will exhibit the initial performance figures. The concept of reliabillty is used to express this time dimension of the quality . Measurement and presentation of the conformance figures are straightforward; any conformance parameter can be measured directly and its value expressed. The situation is, however, different from determination and presentation of the reliability. The reliabilİty depends, in principle, on application conditions, which means it is not possible to establish an exact and unique reliability figure for a given device or IC. In addition, the reliability, determination itself, regardless of the application conditions used, cannot be made by direct measurements. This is mainly because of practical constraints. Theoretically, it is possible to determine the mean time to failure directly if a corresponding number of device or ICs are exposed to working conditions and times to failure of each of them are recorded. This is, however, practically meaningless; such a test would last for tens of years, and by the time the data are collected nobody would be interested in them. That is why accelerated tests have to be applied to obtain the results in a reasonable time of 1 or 2 months. The failures in ICs can be classified in at least three different ways: according to failure modes, according to failure mechanisms, and according to failure causes. The failure mode is the observed result of a failure, such as an open circuit, short circuit, or parameter degradation. The failure mechanism is the phyical, chemical, or other process that results in a failure. Finally , the failure cause is a circumstance during design, production, testing, or operation that initates or contributes to a failure mechanism. The focus of this study is the modeling of parameter degradation reliability of p- MOS and n-MOS transistors due to the hot-carriers under analog operation. Hot- carrier failure cause can initiate the electron/holetrapping/generation and/or interface trap creation mechanism leading to changes of oxide charge and trap densities during device operation. A lot of efforts have been devoted to study the mechanisms due to the hot-carrier and modeling the device degradation due to these effects. However , these modelings are often performed on digital applications. Analog applications differ from digital ones by a number of points. Analog circuit reliability prediction has to take analog circuit design variables such as channel length, biasing conditions, and circuit topography into consideration. In order to achieve highest possible speed, smallest area and smallest power consumption usually L=Lmin are chosen for digital applications. However, for nearly all-analog applications this choice is inadequate. In order to improve matching and noise behavior, channel lengths usually need to be chosen several times Lmin. For those greater lengths also the small-signal parameters especially the drain conductance, are largely improved. However, because analog circuits usually use long-channel devices, the influence of hot-carrier effects on analog circuit performance has been believed to be minimal and, as a result, has been mostly overlooked. Therefore, the most important device parameters in these two application fields do not coincide. For example, power supply scaling for analog circuİts will not likely be as aggressive as for digital circuits, because submicron devices are necessary for high speed applications. However , the operation of analog circuits is sensitive to device parameter variations. Furthermore, device parameter variations depend on the specific application of a given analog circuit. The proposed models combines the advantages of the parameter fitting method and so-called AId model. The essence of the model is the translation of the physical W,mechanisms leading to degradation into the MOSFET model equations correct place via an empirical description. Because of the correct place of the empirical description in the MOSFET model equations the parameter extraction will be as simple as that of the so-called LlIo model. The empirical description was found from different degradations and fresh devices, so the accuracy is as high as that of the parameter fitting method. Furthermore, the general structure of the empirical description is independent of the process technology. Therefore, it does not impose a much higher requirement on device engineer . Another important feature of the proposed models is the prediction of the device lifetime at real life. This is an important feature because most of the developed degradation models are not able to predict the device lifetime. Therefore, several extrapolation laws to calculate the Iifetime have been developed. But, most of the developed lifetime prediction models are developed for digital applications. However, when the same lifetime prediction models are applied to analog applications, gross lifetime prediction error results. This is because the stress conditions are totally different in analog applications compared to digital applications. The proposed model includes a hot-carrier degradation model and a lifetime prediction model as a single model suitable for analog applications. The accuracy of the presented models has been verified with experimental data.

Book Nano scale CMOS Analog Circuits

Download or read book Nano scale CMOS Analog Circuits written by Soumya Pandit and published by CRC Press. This book was released on 2018-09-03 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database. Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits. The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation. • Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method • Provides case studies demonstrating the practical use of these two methods • Explores circuit sizing and specification translation tasks • Introduces the particle swarm optimization technique and provides examples of sizing analog circuits • Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.

Book Compact Models for Integrated Circuit Design

Download or read book Compact Models for Integrated Circuit Design written by Samar K. Saha and published by CRC Press. This book was released on 2018-09-03 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.

Book CMOS Digital Integrated Circuits

Download or read book CMOS Digital Integrated Circuits written by Sung-Mo Kang and published by . This book was released on 2002 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth edition of CMOS Digital Integrated Circuits: Analysis and Design continues the well-established tradition of the earlier editions by offering the most comprehensive coverage of digital CMOS circuit design, as well as addressing state-of-the-art technology issues highlighted by the widespread use of nanometer-scale CMOS technologies. In this latest edition, virtually all chapters have been re-written, the transistor model equations and device parameters have been revised to reflect the sigificant changes that must be taken into account for new technology generations, and the material has been reinforced with up-to-date examples. The broad-ranging coverage of this textbook starts with the fundamentals of CMOS process technology, and continues with MOS transistor models, basic CMOS gates, interconnect effects, dynamic circuits, memory circuits, arithmetic building blocks, clock and I/O circuits, low power design techniques, design for manufacturability and design for testability.

Book Compact MOSFET Models for VLSI Design

Download or read book Compact MOSFET Models for VLSI Design written by A. B. Bhattacharyya and published by Wiley-IEEE Press. This book was released on 2009-07-23 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practicing designers, students, and educators in the semiconductor field face an ever expanding portfolio of MOSFET models. In Compact MOSFET Models for VLSI Design , A.B. Bhattacharyya presents a unified perspective on the topic, allowing the practitioner to view and interpret device phenomena concurrently using different modeling strategies. Readers will learn to link device physics with model parameters, helping to close the gap between device understanding and its use for optimal circuit performance. Bhattacharyya also lays bare the core physical concepts that will drive the future of VLSI development, allowing readers to stay ahead of the curve, despite the relentless evolution of new models. Adopts a unified approach to guide students through the confusing array of MOSFET models Links MOS physics to device models to prepare practitioners for real-world design activities Helps fabless designers bridge the gap with off-site foundries Features rich coverage of: quantum mechanical related phenomena Si-Ge strained-Silicon substrate non-classical structures such as Double Gate MOSFETs Presents topics that will prepare readers for long-term developments in the field Includes solutions in every chapter Can be tailored for use among students and professionals of many levels Comes with MATLAB code downloads for independent practice and advanced study This book is essential for students specializing in VLSI Design and indispensible for design professionals in the microelectronics and VLSI industries. Written to serve a number of experience levels, it can be used either as a course textbook or practitioner’s reference. Access the MATLAB code, solution manual, and lecture materials at the companion website: www.wiley.com/go/bhattacharyya

Book CMOS

    Book Details:
  • Author : R. Jacob Baker
  • Publisher : John Wiley & Sons
  • Release : 2008
  • ISBN : 0470229411
  • Pages : 1074 pages

Download or read book CMOS written by R. Jacob Baker and published by John Wiley & Sons. This book was released on 2008 with total page 1074 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edition provides an important contemporary view of a wide range of analog/digital circuit blocks, the BSIM model, data converter architectures, and more. The authors develop design techniques for both long- and short-channel CMOS technologies and then compare the two.

Book Physical Modeling and Analysis of Carrier Confinement and Transport in Silicon on insulator and Double gate CMOS Devices and Circuits

Download or read book Physical Modeling and Analysis of Carrier Confinement and Transport in Silicon on insulator and Double gate CMOS Devices and Circuits written by Lixin Ge and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: This dissertation mainly focuses on the development of a University of Florida generic process/physics-based compact model (UFDG) for complementary metal-oxide-semiconductor (CMOS) double-gate (DG) field-effect transistors (FETs), enabling predictive device/circuit simulations and analysis of extremely scaled DG CMOS. Further, updates and improvement of the University of Florida SOI (UFSOI) fully depleted (FD) and partially depleted (or non-fully depleted, NFD) MOSFET models are developed and applied to gain insight into the behavior of scaled SOI MOSFETs in integrated CMOS circuits. As the critical dimensions of MOSFETs shrink below 100 nm, Monte Carlo simulations of such devices show strong off-equilibrium transport effects such as velocity overshoot. A Boltzmann transport equation (BTE)-based analytical model for quasi-ballistic transport (i.e., velocity overshoot) was developed for scaled MOSFETs, and implemented in physics-based compact models (UFSOI/PD, UFSOI/FD, and UFDG), with verification and applications to extremely scaled devices. As the end of the Semiconductor Industry Association (SIA) roadmap is approached, DG MOSFETs, having thin Si-film bodies, will possibly constitute the mainstream CMOS technology due to their superior scalability.

Book Extreme Environment Electronics

Download or read book Extreme Environment Electronics written by John D. Cressler and published by CRC Press. This book was released on 2017-12-19 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world’s foremost experts in extreme environment electronics, the book provides in-depth information on a wide array of topics. It begins by describing the extreme conditions and then delves into a description of suitable semiconductor technologies and the modeling of devices within those technologies. It also discusses reliability issues and failure mechanisms that readers need to be aware of, as well as best practices for the design of these electronics. Continuing beyond just the "paper design" of building blocks, the book rounds out coverage of the design realization process with verification techniques and chapters on electronic packaging for extreme environments. The final set of chapters describes actual chip-level designs for applications in energy and space exploration. Requiring only a basic background in electronics, the book combines theoretical and practical aspects in each self-contained chapter. Appendices supply additional background material. With its broad coverage and depth, and the expertise of the contributing authors, this is an invaluable reference for engineers, scientists, and technical managers, as well as researchers and graduate students. A hands-on resource, it explores what is required to successfully operate electronics in the most demanding conditions.

Book Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications

Download or read book Reliability of High Mobility Sige Channel Mosfets for Future CMOS Applications written by Jacopo Franco and published by . This book was released on 2013-11-30 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: