EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Phenomenological Micromechanical Model of FCC Metals Under Radiation Induced Crystal Defects

Download or read book A Phenomenological Micromechanical Model of FCC Metals Under Radiation Induced Crystal Defects written by Tomohito Tsuru and published by . This book was released on 2013 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystal defects induced by irradiation obstruct dislocation movement. Hence, the critical resolved shear stress of irradiated material increases. While part of the radiation defects are swept by dislocations released from dislocation sources; therefore localization of plastic deformation are caused by a decrease of radiation defects at the partial region. In this study, in order to predict increase of flow stress due to irradiation, information of density of radiation defects is introduced into a hardening modulus of crystal plasticity. Moreover, a decrease of the work-hardening ratio is represented by considering the disappearance of the radiation defects originating in the dislocation movement. Values of the controlling parameters operating effect of the radiation defects on the flow stress are estimated by a molecular dynamics simulation. We conduct crystal plasticity simulations for copper single crystals under a simple tensile condition. The macroscopic stress-strain responses such as the increase of yield stress and the decrease of work-hardening ratio due to irradiation are numerically predicted. We investigate the effect of radiation defects and the dislocation behaviors on processes of the strain localization.

Book Molecular Dynamics Study of Radiation and Creep Response of Nanotwinned FCC Metals

Download or read book Molecular Dynamics Study of Radiation and Creep Response of Nanotwinned FCC Metals written by Shuyin Jiao and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Research over the past decade has provided compelling evidence that nanotwinned structures may be optimal motifs for the design of high-strength high-ductility materials. This dissertation presents our atomistic study of the deformation mechanisms governing the radiation tolerance, high temperature creep, and fracture response of nanotwinned face-centered cubic (fcc) metals. We employ molecular dynamics (MD) to elucidate the synergistic role of grain boundaries (GBs) and coherent twin boundaries (CTBs) in the radiation tolerance of nanotwinned Cu. While GBs are known to be excellent sinks for point defects, CTBs do not absorb point defects. A beneficial corollary is that the structural integrity of CTBs remains intact as radiation-induced defects pass through them and get absorbed into GBs. Thus, our tension simulations reveal that nanotwinned metals continue to exhibit high strength even after being subjected to radiation damage. We also perform atomistic simulations of cyclic nanoindentation to complement experimental studies of cyclic nano- and micro-indentation, along with indentation creep, on nanotwinned Cu and Ag. Taken together, the studies provide evidence that nanotwinned fcc structures are more stable than their nanocrystalline counterparts. Inspired by the excellent mechanical stability of nanotwinned metals during indentation creep, we investigate high temperature creep in polycrystalline nanotwinned Cu using MD. The simulations reveal that the nanotwinned metals exhibit greater creep resistance with decreasing twin boundary (TB) spacing at all applied stresses. Nanotwinned metals with very high density of TBs exhibit a new creep deformation mechanism at high stresses governed by TB migration. This is in contrast to nanocrystalline and nanotwinned metals with larger twin spacing, which exhibit a more conventional transition from GB diffusion and sliding to dislocation nucleation. Finally, our investigation of the crack propagation along CTBs in a range of fcc metals with various crack and sample geometries indicates that the alternating brittle-ductile behavior of CTBs observed perviously is sensitive to the material, and crack length. In summary, our results furnish insights into the role of TBs in governing the remarkable mechanical stability, creep resistance and radiation tolerance of nanotwinned metals, making them strong candidates for future structural materials for extreme environments.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1995 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Science and Technology Index

Download or read book Applied Science and Technology Index written by and published by . This book was released on 1995 with total page 1756 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Book Fundamentals of Materials Science

Download or read book Fundamentals of Materials Science written by Eric J. Mittemeijer and published by Springer Nature. This book was released on 2022-01-01 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. “In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work.” G. Petzow in International Journal of Materials Research. “The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick ‘cook book’ type text, but as a serious, critical treatise for some significant time to come.” G.S. Upadhyaya in Science of Sintering. “The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, ‘Intermezzos’, ‘Epilogues’ and asides within the text from the author’s experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science.” M. Davies in Materials World.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1993 with total page 1212 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanical Behavior of Materials

Download or read book Mechanical Behavior of Materials written by Marc A. Meyers and published by . This book was released on 2008 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes numerous examples and problems for student practice, this textbook is ideal for courses on the mechanical behaviour of materials taught in departments of mechanical engineering and materials science.

Book Martensitic Transformation

Download or read book Martensitic Transformation written by Zenji Nishiyama and published by Elsevier. This book was released on 2012-12-02 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Martensitic Transformation examines martensitic transformation based on the known crystallographical data. Topics covered range from the crystallography of martensite to the transformation temperature and rate of martensite formation. The conditions for martensite formation and stabilization of austenite are also discussed, along with the crystallographic theory of martensitic transformations. Comprised of six chapters, this book begins with an introduction to martensite and martensitic transformation, with emphasis on the basic properties of martensite in steels such as carbon steels. The next two chapters deal with the crystallography of martensite and discuss the martensitic transformation behavior of the second-order transition; lattice imperfections in martensite; and close-packed layer structures of martensites produced from ? phase in noble-metal-base alloys. Thermodynamical problems and kinetics are also analysed, together with conditions for the nucleation of martensite and problems concerning stabilization of austenite. The last chapter discusses the theory of the mechanism underlying martensitic transformation. This monograph will be of interest to metallurgists and materials scientists.

Book Physics of Solid Solution Strengthening

Download or read book Physics of Solid Solution Strengthening written by E. Collings and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the proceedings of a Symposium entitled "The Physics of Solid-Solution Strengthening in Alloys" which was held at McCormick Place, Chicago, on October 2, 1973, in association with a joint meeting of the American Society for Metals (ASM) and The Metallurgical Society (TMS) of the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME). The symposium, which was initiated and organized by the editors of this volume, was sponsored by the Committee on Alloy Phases, Institute of Metals Division, TMS, AIME, and the Flow and Fracture Section of the Materials Science Division, ASM. The discipline of Alloy Design has been very active in recent years, during which considerable stress has been placed on the roles of crystallography and microstructure in the rationalization and prediction of properties. Underestimated as a component of alloy design, however, has been the importance of physical property studies, even though physical property measurements have tradi tionally been employed to augment direct or x-ray observations in the determination of phase equilibrium (and, indeed, metastable equilibrium) boundaries.

Book Dislocations  Mesoscale Simulations and Plastic Flow

Download or read book Dislocations Mesoscale Simulations and Plastic Flow written by Ladislas Kubin and published by OUP Oxford. This book was released on 2013-04-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past twenty years, new experimental approaches, improved models and progress in simulation techniques brought new insights into long-standing issues concerning dislocation-based plasticity in crystalline materials. During this period, three-dimensional dislocation dynamics simulations appeared and reached maturity. Their objectives are to unravel the relation between individual and collective dislocation processes at the mesoscale, to establish connections with atom-scale studies of dislocation core properties and to bridge, in combination with modelling, the gap between defect properties and phenomenological continuum models for plastic flow. Dislocation dynamics simulations are becoming accessible to a wide range of users. This book presents to students and researchers in materials science and mechanical engineering a comprehensive coverage of the physical body of knowledge on which they are based. It includes classical studies, which are too often ignored, recent experimental and theoretical advances, as well as a discussion of selected applications on various topics.

Book Reactor Core Materials

Download or read book Reactor Core Materials written by and published by . This book was released on 1960 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Nuclear Engineering

Download or read book Handbook of Nuclear Engineering written by Dan Gabriel Cacuci and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 3701 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.

Book Recent Developments in the Study of Recrystallization

Download or read book Recent Developments in the Study of Recrystallization written by Peter Wilson and published by BoD – Books on Demand. This book was released on 2013-02-06 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recrystallization is a phenomenon moderately well documented in the geological and metallurgical literature. This book provides a timely overview of the latest research and methods in a variety of fields where recrystallization is studied and is an important factor. The main advantage of a new look at these fields is the rapid increase in modern techniques, such as TEM, spectrometers and modeling capabilities, all of which are providing us with far better images and analysis than ever previously possible. This book will be invaluable to a wide range of research scientists; metallurgists looking to improve properties of alloys, those interested in how the latest equipment may be used to image grains and to all those who work with frozen aqueous solutions where recrystallization may be a problem.

Book Micromechanics of Defects in Solids

Download or read book Micromechanics of Defects in Solids written by T. Mura and published by Springer Science & Business Media. This book was released on 1987-11-30 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book stems from a course on Micromechanics that I started about fifteen years ago at Northwestern University. At that time, micromechanics was a rather unfamiliar subject. Although I repeated the course every year, I was never convinced that my notes have quite developed into a final manuscript because new topics emerged constantly requiring revisions, and additions. I finally came to realize that if this is continued, then I will never complete the book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a book in Japanese, entitled Micromechanics, published by Baifu-kan, Tokyo, in 1975. It received an extremely favorable response from students and re searchers in Japan. This encouraged me to go ahead and publish my course notes in their latest version, as this book, which contains further development of the subject and is more comprehensive than the one published in Japanese. Micromechanics encompasses mechanics related to microstructures of materials. The method employed is a continuum theory of elasticity yet its applications cover a broad area relating to the mechanical behavior of materi als: plasticity, fracture and fatigue, constitutive equations, composite materi als, polycrystals, etc. These subjects are treated in this book by means of a powerful and unified method which is called the 'eigenstrain method. ' In particular, problems relating to inclusions and dislocations are most effectively analyzed by this method, and therefore, special emphasis is placed on these topics.

Book Opportunities in Protection Materials Science and Technology for Future Army Applications

Download or read book Opportunities in Protection Materials Science and Technology for Future Army Applications written by National Research Council and published by National Academies Press. This book was released on 2011-08-27 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Armor plays a significant role in the protection of warriors. During the course of history, the introduction of new materials and improvements in the materials already used to construct armor has led to better protection and a reduction in the weight of the armor. But even with such advances in materials, the weight of the armor required to manage threats of ever-increasing destructive capability presents a huge challenge. Opportunities in Protection Materials Science and Technology for Future Army Applications explores the current theoretical and experimental understanding of the key issues surrounding protection materials, identifies the major challenges and technical gaps for developing the future generation of lightweight protection materials, and recommends a path forward for their development. It examines multiscale shockwave energy transfer mechanisms and experimental approaches for their characterization over short timescales, as well as multiscale modeling techniques to predict mechanisms for dissipating energy. The report also considers exemplary threats and design philosophy for the three key applications of armor systems: (1) personnel protection, including body armor and helmets, (2) vehicle armor, and (3) transparent armor. Opportunities in Protection Materials Science and Technology for Future Army Applications recommends that the Department of Defense (DoD) establish a defense initiative for protection materials by design (PMD), with associated funding lines for basic and applied research. The PMD initiative should include a combination of computational, experimental, and materials testing, characterization, and processing research conducted by government, industry, and academia.

Book Materials Issues for Generation IV Systems

Download or read book Materials Issues for Generation IV Systems written by Véronique Ghetta and published by Springer Science & Business Media. This book was released on 2008-04-23 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global warming, shortage of low-cost oil resources and the increasing demand for energy are currently controlling the world's economic expansion while often opposing desires for sustainable and peaceful development. In this context, atomic energy satisfactorily fulfills the criteria of low carbon gas production and high overall yield. However, in the absence of industrial fast-breeders the use of nuclear fuel is not optimal, and the production of high activity waste materials is at a maximum. These are the principal reasons for the development of a new, fourth generation of nuclear reactors, minimizing the undesirable side-effects of current nuclear energy production technology while increasing yields by increasing operation temperatures and opening the way for the industrial production of hydrogen through the decomposition of water. The construction and use of such reactors is hindered by several factors, including performance limitations of known structural materials, particularly if the life of the projected systems had to extend over the periods necessary to achieve low costs (at least 60 years). This book collects lectures and seminars presented at the homonymous NATO ASI held in autumn 2007 at the Institut d’Etudes Scientifiques in Cargèse, France. The adopted approach aims at improving and coordinating basic knowledge in materials science and engineering with specific areas of condensed matter physics, the physics of particle/matter interaction and of radiation damage. It is our belief that this methodology is crucially conditioning the development and the industrial production of new structural materials capable of coping with the requirements of these future reactors.