EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Multivariate Time Series Method for Monte Carlo Reactor Analysis

Download or read book A Multivariate Time Series Method for Monte Carlo Reactor Analysis written by and published by . This book was released on 2008 with total page 1188 pages. Available in PDF, EPUB and Kindle. Book excerpt: A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor.

Book Multivariate Time Series Analysis and Applications

Download or read book Multivariate Time Series Analysis and Applications written by William W. S. Wei and published by . This book was released on 2019-02-22 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis--Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.

Book Development of High Fidelity Methods for 3D Monte Carlo Transient Analysis of Nuclear Reactors

Download or read book Development of High Fidelity Methods for 3D Monte Carlo Transient Analysis of Nuclear Reactors written by Samuel Christopher Shaner and published by . This book was released on 2018 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo is increasingly being used to perform high-fidelity, steady-state neutronics analysis of power reactor geometries on today’s leadership class supercomputers. Extending Monte Carlo to time dependent problems has proven to be a formidable challenge due to the significant computational resource and data processing requirements. In this thesis, a transient methodology is proposed and implemented to enable accurate and computationally tractable time dependent Monte Carlo analysis. The frequency transform method has been described and implemented in Monte Carlo for the first time. The attractiveness of this method lies in its ability to accurately capture the space and time dependent distribution of the delayed neutron source throughout a transient. Nuances to the algorithmic implementation are described and validated through a series of simple analytical test problems. Comparison with the adiabatic method currently employed for Monte Carlo transient analysis shows significant improvement in the spatial distribution and magnitude of the power for a negative reactivity insertion transient in the 2D and 3D C5G7 geometry. To aid in understanding the effect of statistical uncertainty in the tallied quantities on the time dependent flux solution, a simplified point kinetics model was developed and used for insightful analysis on simple transient test problems. This revealed how the time dependent flux profiles for a series of independent trials can be approximated by a normal distribution at low uncertainties in the tallied reactivity, but deviates from a normal distribution at relatively modest uncertainties in reactivity. Given the compuational constraints of solving large problems, having a simple model that can provide insight on the expected behavior and flux distribution can be very valuable. The frequency transform methodology belongs to a class of indirect space-time factorization methods that perform high-order calculations (e.g. Monte Carlo) over long time steps and low-order, computationally-efficient calculations (e.g. Point Kinetics) over short time steps as an approach to balance performance and accuracy. The coarse mesh finite difference (CMFD) diffusion operator is employed as the low-order solver in Monte Carlo transient analysis for the first time. The CMFD diffusion operator is attractive due to its potential to increase the time step size between the computationally expensive high-order solves. Implementing this methodology is important as continuous energy Monte Carlo is reactor-agnostic and able to treat complex geometries without difficulty, opening up the possibility of solving transients on new experimental geometries for which there is little data.

Book Exploring Monte Carlo Methods

Download or read book Exploring Monte Carlo Methods written by William L. Dunn and published by Elsevier. This book was released on 2022-06-07 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. Provides a comprehensive yet concise treatment of Monte Carlo methods Uses the famous "Buffon’s needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions

Book Handbook of Monte Carlo Methods

Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Book Sequential Monte Carlo Methods in Practice

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Book Simulation and the Monte Carlo Method

Download or read book Simulation and the Monte Carlo Method written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2016-10-21 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.

Book Simulation and the Monte Carlo Method

Download or read book Simulation and the Monte Carlo Method written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first simultaneous coverage of the statistical aspects of simulation and Monte Carlo methods, their commonalities and their differences for the solution of a wide spectrum of engineering and scientific problems. It contains standard material usually considered in Monte Carlo simulation as well as new material such as variance reduction techniques, regenerative simulation, and Monte Carlo optimization.

Book Monte Carlo Methods

Download or read book Monte Carlo Methods written by Rose Kraft and published by . This book was released on 1964 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Monte Carlo Simulation Method for System Reliability and Risk Analysis

Download or read book The Monte Carlo Simulation Method for System Reliability and Risk Analysis written by Enrico Zio and published by Springer Science & Business Media. This book was released on 2012-11-02 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergraduate and graduate students as well as researchers and practitioners. It provides a powerful tool for all those involved in system analysis for reliability, maintenance and risk evaluations.

Book Elements of Multivariate Time Series Analysis

Download or read book Elements of Multivariate Time Series Analysis written by Gregory C. Reinsel and published by Springer. This book was released on 1993 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is concerned with the analysis of multivariate time series data. Such data might arise in business and economics, engineering, geophysical sciences, agriculture, and many other fields. The emphasis is on providing an account of the basic concepts and methods which are useful in analyzing such data, and includes a wide variety of examples drawn from many fields of application.

Book Time Series Analysis

    Book Details:
  • Author : Chun-Kit Ngan
  • Publisher : BoD – Books on Demand
  • Release : 2019-11-06
  • ISBN : 1789847788
  • Pages : 131 pages

Download or read book Time Series Analysis written by Chun-Kit Ngan and published by BoD – Books on Demand. This book was released on 2019-11-06 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide readers with the current information, developments, and trends in a time series analysis, particularly in time series data patterns, technical methodologies, and real-world applications. This book is divided into three sections and each section includes two chapters. Section 1 discusses analyzing multivariate and fuzzy time series. Section 2 focuses on developing deep neural networks for time series forecasting and classification. Section 3 describes solving real-world domain-specific problems using time series techniques. The concepts and techniques contained in this book cover topics in time series research that will be of interest to students, researchers, practitioners, and professors in time series forecasting and classification, data analytics, machine learning, deep learning, and artificial intelligence.

Book Theory  Application  and Implementation of Monte Carlo Method in Science and Technology

Download or read book Theory Application and Implementation of Monte Carlo Method in Science and Technology written by Pooneh Saidi Bidokhti and published by BoD – Books on Demand. This book was released on 2019-12-18 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monte Carlo method is a numerical technique to model the probability of all possible outcomes in a process that cannot easily be predicted due to the interference of random variables. It is a technique used to understand the impact of risk, uncertainty, and ambiguity in forecasting models. However, this technique is complicated by the amount of computer time required to achieve sufficient precision in the simulations and evaluate their accuracy. This book discusses the general principles of the Monte Carlo method with an emphasis on techniques to decrease simulation time and increase accuracy.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Monte Carlo Methods in Nuclear Reactor Analysis

Download or read book Monte Carlo Methods in Nuclear Reactor Analysis written by and published by . This book was released on 1984 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Variational Variance Reduction for Monte Carlo Reactor Analysis

Download or read book Variational Variance Reduction for Monte Carlo Reactor Analysis written by Jeffery Dennis Densmore and published by . This book was released on 2002 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fast Sequential Monte Carlo Methods for Counting and Optimization

Download or read book Fast Sequential Monte Carlo Methods for Counting and Optimization written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2013-11-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problems Numerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative error A new generic sequential importance sampling algorithm alongside extensive numerical results An appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods.