EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Finite Element Method for First Order Hyperbolic Systems

Download or read book A Finite Element Method for First Order Hyperbolic Systems written by Mitchell Luskin and published by . This book was released on 1980 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new finite element method is proposed for the numerical solution of a class of initial-boundary value problems for first order hyperbolic systems in one space dimension. An application of our procedure to a system modeling gas flow in a pipe is discussed. Asymptotic error estimates are derived in the L sq norm in space. (Author).

Book Finite Element Methods for First order Hyperbolic Systems with Particular Emphasis on the Compressible Euler Equations

Download or read book Finite Element Methods for First order Hyperbolic Systems with Particular Emphasis on the Compressible Euler Equations written by Stanford University. Center for Large Scale Scientific Computation and published by . This book was released on 1983 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Partial Differential Equations with Numerical Methods

Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Book A Finite Element Method and Corresponding Pilot Computer Code for Hyperbolic Systems of Equations in Two Spatial Dimensions and Time Applied to Unsteady Gas Flows

Download or read book A Finite Element Method and Corresponding Pilot Computer Code for Hyperbolic Systems of Equations in Two Spatial Dimensions and Time Applied to Unsteady Gas Flows written by James A. Schmitt and published by . This book was released on 1977 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report contains a discussion of a numerical method for solving systems of first order time dependent hyperbolic equations in two spatial variables. This scheme which combines the finite element methodology and the properties of a hyperbolic system of differential equations is applied to unsteady gas flow problems. The formulation is based on the elementwise least squares minimization of the differential residual error and on the construction of the finite elements in both space and time. The corresponding computer program is listed. Numerical experiments involving both smooth and shocked flows are discussed. Areas of possible future code development are proposed. (Author).

Book Least Squares Finite Element Methods

Download or read book Least Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.

Book A Finite Element Method for First Order Hyperbolic Equations

Download or read book A Finite Element Method for First Order Hyperbolic Equations written by Garth A. Baker and published by . This book was released on 1975 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Solution of Partial Differential Equations by the Finite Element Method

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Book Finite Element Methods and Their Applications

Download or read book Finite Element Methods and Their Applications written by Zhangxin Chen and published by Springer Science & Business Media. This book was released on 2005-06-23 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Finite Elements III

    Book Details:
  • Author : Alexandre Ern
  • Publisher : Springer Nature
  • Release : 2021-03-29
  • ISBN : 3030573486
  • Pages : 417 pages

Download or read book Finite Elements III written by Alexandre Ern and published by Springer Nature. This book was released on 2021-03-29 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the third volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume III is divided into 28 chapters. The first eight chapters focus on the symmetric positive systems of first-order PDEs called Friedrichs' systems. This part of the book presents a comprehensive and unified treatment of various stabilization techniques from the existing literature. It discusses applications to advection and advection-diffusion equations and various PDEs written in mixed form such as Darcy and Stokes flows and Maxwell's equations. The remainder of Volume III addresses time-dependent problems: parabolic equations (such as the heat equation), evolution equations without coercivity (Stokes flows, Friedrichs' systems), and nonlinear hyperbolic equations (scalar conservation equations, hyperbolic systems). It offers a fresh perspective on the analysis of well-known time-stepping methods. The last five chapters discuss the approximation of hyperbolic equations with finite elements. Here again a new perspective is proposed. These chapters should convince the reader that finite elements offer a good alternative to finite volumes to solve nonlinear conservation equations.

Book The Least Squares Finite Element Method

Download or read book The Least Squares Finite Element Method written by Bo-nan Jiang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.

Book Partial Differential Equations and the Finite Element Method

Download or read book Partial Differential Equations and the Finite Element Method written by Pavel Ŝolín and published by John Wiley & Sons. This book was released on 2005-12-16 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic introduction to partial differential equations and modern finite element methods for their efficient numerical solution Partial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral or hp-FEM. A solid introduction to the theory of PDEs and FEM contained in Chapters 1-4 serves as the core and foundation of the publication. Chapter 5 is devoted to modern higher-order methods for the numerical solution of ordinary differential equations (ODEs) that arise in the semidiscretization of time-dependent PDEs by the Method of Lines (MOL). Chapter 6 discusses fourth-order PDEs rooted in the bending of elastic beams and plates and approximates their solution by means of higher-order Hermite and Argyris elements. Finally, Chapter 7 introduces the reader to various PDEs governing computational electromagnetics and describes their finite element approximation, including modern higher-order edge elements for Maxwell's equations. The understanding of many theoretical and practical aspects of both PDEs and FEM requires a solid knowledge of linear algebra and elementary functional analysis, such as functions and linear operators in the Lebesgue, Hilbert, and Sobolev spaces. These topics are discussed with the help of many illustrative examples in Appendix A, which is provided as a service for those readers who need to gain the necessary background or require a refresher tutorial. Appendix B presents several finite element computations rooted in practical engineering problems and demonstrates the benefits of using higher-order FEM. Numerous finite element algorithms are written out in detail alongside implementation discussions. Exercises, including many that involve programming the FEM, are designed to assist the reader in solving typical problems in engineering and science. Specifically designed as a coursebook, this student-tested publication is geared to upper-level undergraduates and graduate students in all disciplines of computational engineeringand science. It is also a practical problem-solving reference for researchers, engineers, and physicists.

Book Numerical Solution of Differential Equations

Download or read book Numerical Solution of Differential Equations written by Zhilin Li and published by Cambridge University Press. This book was released on 2017-11-30 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.

Book The Finite Element Method  Solid mechanics

Download or read book The Finite Element Method Solid mechanics written by O. C. Zienkiewicz and published by Butterworth-Heinemann. This book was released on 2000 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Volume Methods for Hyperbolic Problems

Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Book Analytic Methods for Partial Differential Equations

Download or read book Analytic Methods for Partial Differential Equations written by G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.