EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Discontinuous Finite Element Method for Solving a Multi well Problem

Download or read book A Discontinuous Finite Element Method for Solving a Multi well Problem written by University of Minnesota. Institute for Mathematics and Its Applications and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Discontinuous Enrichment Method  DEM  for Multi scale Transport Problems

Download or read book The Discontinuous Enrichment Method DEM for Multi scale Transport Problems written by Irina Kalashnikova and published by Stanford University. This book was released on 2011 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: A discontinuous enrichment method (DEM) for the efficient finite element solution of advection-dominated transport problems in fluid mechanics whose solutions are known to possess multi-scale features is developed. Attention is focused specifically on the two-dimensional (2D) advection-diffusion equation, the usual scalar model for the Navier-Stokes equations. Following the basic DEM methodology [1], the usual Galerkin polynomial approximation is locally enriched by the free-space solutions to the governing homogeneous partial differential equation (PDE). For the constant-coefficient advection-diffusion equation, several families of free-space solutions are derived. These include a family of exponential functions that exhibit a steep gradient in some flow direction, and a family of discontinuous polynomials. A parametrization of the former class of functions with respect to an angle parameter is developed, so as to enable the systematic design and implementation of DEM elements of arbitrary orders. It is shown that the original constant-coefficient methodology has a natural extension to variable-coefficient advection-diffusion problems. For variable-coefficient transport problems, the approximation properties of DEM can be improved by augmenting locally the enrichment space with a "higher-order" enrichment function that solves the governing PDE with the advection field a(x) linearized to second order. A space of Lagrange multipliers, introduced at the element interfaces to enforce a weak continuity of the solution and related to the normal derivatives of the enrichment functions, is developed. The construction of several low and higher-order DEM elements fitting this paradigm is discussed in detail. Numerical results for several constant as well as variable-coefficient advection-diffusion benchmark problems reveal that these DEM elements outperform their standard Galerkin and stabilized Galerkin counterparts of comparable computational complexity by a large margin, especially when the flow is advection-dominated.

Book Discontinuous Galerkin Methods

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Book Adaptive Discontinuous Galerkin Finite Element Methods

Download or read book Adaptive Discontinuous Galerkin Finite Element Methods written by Haihang You and published by . This book was released on 2009 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Discontinuous Galerkin Method is one variant of the Finite Element Methods for solving partial differential equations, which was first introduced by Reed and Hill in 1970's [27]. Discontinuous Galerkin Method (DGFEM) differs from the standard Galerkin FEM that continuity constraints are not imposed on the inter-element boundaries. It results in a solution which is composed of totally piecewise discontinuous functions. The absence of continuity constraints on the inter-element boundaries implies that DG method has a great deal of flexibility at the cost of increasing the number of degrees of freedom. This flexibility is the source of many but not all of the advantages of the DGFEM method over the Continuous Galerkin (CGFEM) method that uses spaces of continuous piecewise polynomial functions and other "less standard" methods such as nonconforming methods. As DGFEM method leads to bigger system to solve, theoretical and practical approaches to speed it up are our main focus in this dissertation. This research aims at designing and building an adaptive discontinuous Galerkin finite element method to solve partial differential equations with fast time for desired accuracy on modern architecture.

Book A Study on Discontinuous Petrov Galerkin Finite Element Methods in Semi linear Problems and Adaptivity

Download or read book A Study on Discontinuous Petrov Galerkin Finite Element Methods in Semi linear Problems and Adaptivity written by Jor-el Thomas Caparas Briones and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In numerical analysis, finite element methods are a method of approximating solutions to differential equations on a domain. In such methods, the solution function is approximated by partitioning the domain into a mesh of elements, and testing candidate functions in a discrete trial space on that mesh against a discrete space of test functions. We explore certain classes of finite element methods called discontinuous Petrov-Galerkin (DPG) finite element methods, where the test space functions are allowed to be discontinuous across elements, and test spaces are selected specifically to optimize stability. Because we are concerned with the accuracy of our approximation, we place focus on how the error behaves in DPG methods. We explore how DPG methods in semi-linear problems, as well as how DPG problems can interact with adaptive methods, a different framework for finite element methods. In addition, we establish some results about the error of DPG approximations, particularly the error using the subspace dual norms that arise from the construction of the test spaces.

Book The Finite Element Method  Solid mechanics

Download or read book The Finite Element Method Solid mechanics written by O. C. Zienkiewicz and published by Butterworth-Heinemann. This book was released on 2000 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Finite Element Method in Engineering

Download or read book The Finite Element Method in Engineering written by S. S. Rao and published by Elsevier. This book was released on 2013-10-22 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Element Method in Engineering introduces the various aspects of finite element method as applied to engineering problems in a systematic manner. It details the development of each of the techniques and ideas from basic principles. New concepts are illustrated with simple examples wherever possible. Several Fortran computer programs are given with example applications to serve the following purposes: to enable the reader to understand the computer implementation of the theory developed; to solve specific problems; and to indicate procedure for the development of computer programs for solving any other problem in the same area. The book begins with an overview of the finite element method. This is followed by separate chapters on numerical solution of various types of finite element equations; the general procedure of finite element analysis; the development higher order and isoparametric elements; and the application of finite element method for static and dynamic solid and structural mechanics problems like frames, plates, and solid bodies. Subsequent chapters deal with the solution of one-, two-, and three-dimensional steady state and transient heat transfer problems; the finite element solution of fluid mechanics problems; and additional applications and generalization of the finite element method.

Book Automated Solution of Differential Equations by the Finite Element Method

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Book Finite Element Solution of Boundary Value Problems

Download or read book Finite Element Solution of Boundary Value Problems written by O. Axelsson and published by Academic Press. This book was released on 2014-05-10 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite Element Solution of Boundary Value Problems: Theory and Computation provides an introduction to both the theoretical and computational aspects of the finite element method for solving boundary value problems for partial differential equations. This book is composed of seven chapters and begins with surveys of the two kinds of preconditioning techniques, one based on the symmetric successive overrelaxation iterative method for solving a system of equations and a form of incomplete factorization. The subsequent chapters deal with the concepts from functional analysis of boundary value problems. These topics are followed by discussions of the Ritz method, which minimizes the quadratic functional associated with a given boundary value problem over some finite-dimensional subspace of the original space of functions. Other chapters are devoted to direct methods, including Gaussian elimination and related methods, for solving a system of linear algebraic equations. The final chapter continues the analysis of preconditioned conjugate gradient methods, concentrating on applications to finite element problems. This chapter also looks into the techniques for reducing rounding errors in the iterative solution of finite element equations. This book will be of value to advanced undergraduates and graduates in the areas of numerical analysis, mathematics, and computer science, as well as for theoretically inclined workers in engineering and the physical sciences.

Book Numerical Solution of Partial Differential Equations by the Finite Element Method

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Book Variational Methods for Crystalline Microstructure   Analysis and Computation

Download or read book Variational Methods for Crystalline Microstructure Analysis and Computation written by Georg Dolzmann and published by Springer. This book was released on 2004-10-23 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase transformations in solids typically lead to surprising mechanical behaviour with far reaching technological applications. The mathematical modeling of these transformations in the late 80s initiated a new field of research in applied mathematics, often referred to as mathematical materials science, with deep connections to the calculus of variations and the theory of partial differential equations. This volume gives a brief introduction to the essential physical background, in particular for shape memory alloys and a special class of polymers (nematic elastomers). Then the underlying mathematical concepts are presented with a strong emphasis on the importance of quasiconvex hulls of sets for experiments, analytical approaches, and numerical simulations.

Book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems

Download or read book Runge Kutta Discontinuous Galerkin Methods for Convection dominated Problems written by Bernardo Cockburn and published by . This book was released on 2000 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

Download or read book Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives written by National Aeronautics and Space Adm Nasa and published by . This book was released on 2018-09-27 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh. Yan, Jue and Shu, Chi-Wang and Bushnell, Dennis M. (Technical Monitor) Langley Research Center NASA/CR-2002-211959, NAS 1.26:211959, ICASE-2002-42...

Book SIAM Journal on Numerical Analysis

Download or read book SIAM Journal on Numerical Analysis written by and published by . This book was released on 2000-03 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Adaptive Finite Element Method for Solving a Double Well Problem Describing Crystalline Microstructure

Download or read book An Adaptive Finite Element Method for Solving a Double Well Problem Describing Crystalline Microstructure written by University of Minnesota. Institute for Mathematics and Its Applications and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book ESAIM

Download or read book ESAIM written by and published by . This book was released on 2008 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: