EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Class of Strongly Singular Integral Operators

Download or read book A Class of Strongly Singular Integral Operators written by Bassam Halim Shayya and published by . This book was released on 1996 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Weighted Norm Inequalities and Related Topics

Download or read book Weighted Norm Inequalities and Related Topics written by J. García-Cuerva and published by Elsevier. This book was released on 2011-08-18 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying thread of this book is the topic of Weighted Norm Inequalities, but many other related topics are covered, including Hardy spaces, singular integrals, maximal operators, functions of bounded mean oscillation and vector valued inequalities. The emphasis is placed on basic ideas; problems are first treated in a simple context and only afterwards are further results examined.

Book Singular Integral Equations

Download or read book Singular Integral Equations written by Ricardo Estrada and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems that are usually solved by differential equation techniques can be solved more effectively by integral equation methods. This work focuses exclusively on singular integral equations and on the distributional solutions of these equations. A large number of beautiful mathematical concepts are required to find such solutions, which in tum, can be applied to a wide variety of scientific fields - potential theory, me chanics, fluid dynamics, scattering of acoustic, electromagnetic and earth quake waves, statistics, and population dynamics, to cite just several. An integral equation is said to be singular if the kernel is singular within the range of integration, or if one or both limits of integration are infinite. The singular integral equations that we have studied extensively in this book are of the following type. In these equations f (x) is a given function and g(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0

Book Bounded and Compact Integral Operators

Download or read book Bounded and Compact Integral Operators written by David E. Edmunds and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness).

Book Variable Lebesgue Spaces

    Book Details:
  • Author : David V. Cruz-Uribe
  • Publisher : Springer Science & Business Media
  • Release : 2013-02-12
  • ISBN : 3034805489
  • Pages : 316 pages

Download or read book Variable Lebesgue Spaces written by David V. Cruz-Uribe and published by Springer Science & Business Media. This book was released on 2013-02-12 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​

Book Nonlinear Integral Operators and Applications

Download or read book Nonlinear Integral Operators and Applications written by Carlo Bardaro and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1903 Fredholm published his famous paper on integral equations. Since then linear integral operators have become an important tool in many areas, including the theory of Fourier series and Fourier integrals, approximation theory and summability theory, and the theory of integral and differential equations. As regards the latter, applications were soon extended beyond linear operators. In approximation theory, however, applications were limited to linear operators mainly by the fact that the notion of singularity of an integral operator was closely connected with its linearity. This book represents the first attempt at a comprehensive treatment of approximation theory by means of nonlinear integral operators in function spaces. In particular, the fundamental notions of approximate identity for kernels of nonlinear operators and a general concept of modulus of continuity are developed in order to obtain consistent approximation results. Applications to nonlinear summability, nonlinear integral equations and nonlinear sampling theory are given. In particular, the study of nonlinear sampling operators is important since the results permit the reconstruction of several classes of signals. In a wider context, the material of this book represents a starting point for new areas of research in nonlinear analysis. For this reason the text is written in a style accessible not only to researchers but to advanced students as well.

Book Singular Integral Operators  Factorization and Applications

Download or read book Singular Integral Operators Factorization and Applications written by Albrecht Böttcher and published by Birkhäuser. This book was released on 2012-12-06 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the International Workshop on Operator Theory and Applications held at the University of Algarve in Faro, Portugal, September 12-15, in the year 2000. The main topics of the conference were !> Factorization Theory; !> Factorization and Integrable Systems; !> Operator Theoretical Methods in Diffraction Theory; !> Algebraic Techniques in Operator Theory; !> Applications to Mathematical Physics and Related Topics. A total of 94 colleagues from 21 countries participated in the conference. The major part of participants came from Portugal (32), Germany (17), Israel (6), Mexico (6), the Netherlands (5), USA (4) and Austria (4). The others were from Ukraine, Venezuela (3 each), Spain, Sweden (2 each), Algeria, Australia, Belorussia, France, Georgia, Italy, Japan, Kuwait, Russia and Turkey (one of each country). It was the 12th meeting in the framework of the IWOTA conferences which started in 1981 on an initiative of Professors 1. Gohberg (Tel Aviv) and J. W. Helton (San Diego). Up to now, it was the largest conference in the field of Operator Theory in Portugal.

Book Real Variable Theory of Musielak Orlicz Hardy Spaces

Download or read book Real Variable Theory of Musielak Orlicz Hardy Spaces written by Dachun Yang and published by Springer. This book was released on 2017-05-09 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak–Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak–Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.

Book Advances in Harmonic Analysis and Operator Theory

Download or read book Advances in Harmonic Analysis and Operator Theory written by Alexandre Almeida and published by Springer Science & Business Media. This book was released on 2013-01-31 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is dedicated to Professor Stefan Samko on the occasion of his seventieth birthday. The contributions display the range of his scientific interests in harmonic analysis and operator theory. Particular attention is paid to fractional integrals and derivatives, singular, hypersingular and potential operators in variable exponent spaces, pseudodifferential operators in various modern function and distribution spaces, as well as related applications, to mention but a few. Most contributions were firstly presented in two conferences at Lisbon and Aveiro, Portugal, in June‒July 2011.

Book Operator Theory  Pseudo Differential Equations  and Mathematical Physics

Download or read book Operator Theory Pseudo Differential Equations and Mathematical Physics written by Yuri I. Karlovich and published by Springer Science & Business Media. This book was released on 2012-10-30 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of papers devoted to the 70th birthday of Professor Vladimir Rabinovich. The opening article (by Stefan Samko) includes a short biography of Vladimir Rabinovich, along with some personal recollections and bibliography of his work. It is followed by twenty research and survey papers in various branches of analysis (pseudodifferential operators and partial differential equations, Toeplitz, Hankel, and convolution type operators, variable Lebesgue spaces, etc.) close to Professor Rabinovich's research interests. Many of them are written by participants of the International workshop “Analysis, Operator Theory, and Mathematical Physics” (Ixtapa, Mexico, January 23–27, 2012) having a long history of scientific collaboration with Vladimir Rabinovich, and are partially based on the talks presented there.The volume will be of great interest to researchers and graduate students in differential equations, operator theory, functional and harmonic analysis, and mathematical physics.​

Book Recent Advances in Operator Theory and Its Applications

Download or read book Recent Advances in Operator Theory and Its Applications written by Marinus A. Kaashoek and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.

Book Multiscale Wavelet Methods for Partial Differential Equations

Download or read book Multiscale Wavelet Methods for Partial Differential Equations written by Wolfgang Dahmen and published by Elsevier. This book was released on 1997-08-13 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications

Book Second Summer School in Analysis and Mathematical Physics

Download or read book Second Summer School in Analysis and Mathematical Physics written by Salvador Pérez-Esteva and published by American Mathematical Soc.. This book was released on 2001 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the second time, a Summer School in Analysis and Mathematical Physics took place at the Universidad Nacional Autonoma de Mexico in Cuernavaca. The purpose of the schools is to provide a bridge from standard graduate courses in mathematics to current research topics, particularly in analysis. The lectures are given by internationally recognized specialists in the fields. The topics covered in this Second Summer School include harmonic analysis, complex analysis, pseudodifferential operators, the mathematics of quantum chaos, and non-linear analysis.

Book Linear and Complex Analysis Problem Book 3

Download or read book Linear and Complex Analysis Problem Book 3 written by Victor P. Havin and published by Springer. This book was released on 2006-12-08 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2-volume book is an updated, reorganized and considerably enlarged version of the previous edition of the Research Problem Book in Analysis (LNM 1043), a collection familiar to many analysts, that has sparked off much research. This new edition, created in a joint effort by a large team of analysts, is, like its predecessor, a collection of unsolved problems of modern analysis designed as informally written mini-articles, each containing not only a statement of a problem but also historical and methodological comments, motivation, conjectures and discussion of possible connections, of plausible approaches as well as a list of references. There are now 342 of these mini- articles, almost twice as many as in the previous edition, despite the fact that a good deal of them have been solved!

Book New Developments in Difference Equations and Applications

Download or read book New Developments in Difference Equations and Applications written by SuiSun Cheng and published by Routledge. This book was released on 2017-09-29 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The late Professor Ming-Po Chen was instrumental in making the Third International Conference on Difference Equations a great success. Dedicated to his memory, these proceedings feature papers presented by many of the most prominent mathematicians in the field. It is a comprehensive collection of the latest developments in topics including stability theory, combinatorics, asymptotics, partial difference equations, as well as applications to biological, social, and natural sciences. This volume is an indispensable reference for academic and applied mathematicians, theoretical physicists, systems engineers, and computer and information scientists.

Book Morrey Spaces

    Book Details:
  • Author : Yoshihiro Sawano
  • Publisher : CRC Press
  • Release : 2020-09-16
  • ISBN : 1498765521
  • Pages : 503 pages

Download or read book Morrey Spaces written by Yoshihiro Sawano and published by CRC Press. This book was released on 2020-09-16 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume I focused mainly on harmonic analysis. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding