Download or read book Bridge to Higher Mathematics written by Sam Vandervelde and published by Lulu.com. This book was released on 2010 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging math textbook is designed to equip students who have completed a standard high school math curriculum with the tools and techniques that they will need to succeed in upper level math courses. Topics covered include logic and set theory, proof techniques, number theory, counting, induction, relations, functions, and cardinality.
Download or read book A Bridge to Higher Mathematics written by Valentin Deaconu and published by CRC Press. This book was released on 2016-12-19 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.
Download or read book A Mathematical Bridge written by Stephen Fletcher Hewson and published by World Scientific. This book was released on 2009 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although higher mathematics is beautiful, natural and interconnected, to the uninitiated it can feel like an arbitrary mass of disconnected technical definitions, symbols, theorems and methods. An intellectual gulf needs to be crossed before a true, deep appreciation of mathematics can develop. This book bridges this mathematical gap. It focuses on the process of discovery as much as the content, leading the reader to a clear, intuitive understanding of how and why mathematics exists in the way it does.The narrative does not evolve along traditional subject lines: each topic develops from its simplest, intuitive starting point; complexity develops naturally via questions and extensions. Throughout, the book includes levels of explanation, discussion and passion rarely seen in traditional textbooks. The choice of material is similarly rich, ranging from number theory and the nature of mathematical thought to quantum mechanics and the history of mathematics. It rounds off with a selection of thought-provoking and stimulating exercises for the reader.
Download or read book Laboratories in Mathematical Experimentation written by Mount Holyoke College and published by Springer Science & Business Media. This book was released on 1997-03 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The text is composed of a set of sixteen laboratory investigations which allow the student to explore rich and diverse ideas and concepts in mathematics. The approach is hands-on, experimental, an approach that is very much in the spirit of modern pedagogy. The course is typically offered in one semester, at the sophomore (second year) level of college. It requires completion of one year of calculus. The course provides a transition to the study of higher, abstract mathematics. The text is written independent of any software. Supplements will be available on the projects' web site.
Download or read book A Bridge to Advanced Mathematics written by Dennis Sentilles and published by Courier Corporation. This book was released on 2013-05-20 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This helpful "bridge" book offers students the foundations they need to understand advanced mathematics. The two-part treatment provides basic tools and covers sets, relations, functions, mathematical proofs and reasoning, more. 1975 edition.
Download or read book Transition to Higher Mathematics written by Bob A. Dumas and published by McGraw-Hill Education. This book was released on 2007 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written for students who have taken calculus and want to learn what "real mathematics" is.
Download or read book Bridge to Abstract Mathematics written by Ralph W. Oberste-Vorth and published by American Mathematical Society. This book was released on 2020-02-20 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Bridge to Abstract Mathematics will prepare the mathematical novice to explore the universe of abstract mathematics. Mathematics is a science that concerns theorems that must be proved within the constraints of a logical system of axioms and definitions rather than theories that must be tested, revised, and retested. Readers will learn how to read mathematics beyond popular computational calculus courses. Moreover, readers will learn how to construct their own proofs. The book is intended as the primary text for an introductory course in proving theorems, as well as for self-study or as a reference. Throughout the text, some pieces (usually proofs) are left as exercises. Part V gives hints to help students find good approaches to the exercises. Part I introduces the language of mathematics and the methods of proof. The mathematical content of Parts II through IV were chosen so as not to seriously overlap the standard mathematics major. In Part II, students study sets, functions, equivalence and order relations, and cardinality. Part III concerns algebra. The goal is to prove that the real numbers form the unique, up to isomorphism, ordered field with the least upper bound. In the process, we construct the real numbers starting with the natural numbers. Students will be prepared for an abstract linear algebra or modern algebra course. Part IV studies analysis. Continuity and differentiation are considered in the context of time scales (nonempty, closed subsets of the real numbers). Students will be prepared for advanced calculus and general topology courses. There is a lot of room for instructors to skip and choose topics from among those that are presented.
Download or read book Towards Higher Mathematics A Companion written by Richard Earl and published by Cambridge University Press. This book was released on 2017-09-07 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book allows students to stretch their mathematical abilities and bridges the gap between school and university.
Download or read book A Gateway to Higher Mathematics written by Jason H. Goodfriend and published by Jones & Bartlett Learning. This book was released on 2005 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Gateway to Higher Mathematics integrates the process of teaching students how to do proofs into the framework of displaying the development of the real number system. The text eases the students into learning how to construct proofs, while preparing students how to cope with the type of proofs encountered in the higher-level courses of abstract algebra, analysis, and number theory. After using this text, the students will not only know how to read and construct proofs, they will understand much about the basic building blocks of mathematics. The text is designed so that the professor can choose the topics to be emphasized, while leaving the remainder as a reference for the students.
Download or read book A Transition to Advanced Mathematics written by William Johnston and published by Oxford University Press. This book was released on 2009-07-27 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Transition to Advanced Mathematics: A Survey Course promotes the goals of a "bridge'' course in mathematics, helping to lead students from courses in the calculus sequence (and other courses where they solve problems that involve mathematical calculations) to theoretical upper-level mathematics courses (where they will have to prove theorems and grapple with mathematical abstractions). The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics, including Logic, Abstract Algebra, Number Theory, Real Analysis, Statistics, Graph Theory, and Complex Analysis. The main objective is "to bring about a deep change in the mathematical character of students -- how they think and their fundamental perspectives on the world of mathematics." This text promotes three major mathematical traits in a meaningful, transformative way: to develop an ability to communicate with precise language, to use mathematically sound reasoning, and to ask probing questions about mathematics. In short, we hope that working through A Transition to Advanced Mathematics encourages students to become mathematicians in the fullest sense of the word. A Transition to Advanced Mathematics has a number of distinctive features that enable this transformational experience. Embedded Questions and Reading Questions illustrate and explain fundamental concepts, allowing students to test their understanding of ideas independent of the exercise sets. The text has extensive, diverse Exercises Sets; with an average of 70 exercises at the end of section, as well as almost 3,000 distinct exercises. In addition, every chapter includes a section that explores an application of the theoretical ideas being studied. We have also interwoven embedded reflections on the history, culture, and philosophy of mathematics throughout the text.
Download or read book A Bridge to Higher Mathematics written by James R. Kirkwood and published by CRC Press. This book was released on 2024-05-08 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this unique text is to provide an “experience” that would facilitate a better transition for mathematics majors to the advanced proof-based courses required for their major. If you feel like you love mathematics but hate proofs, this book is for you. The change from example-based courses such as Introductory Calculus to the proof-based courses in the major is often abrupt, and some students are left with the unpleasant feeling that a subject they loved has turned into material they find hard to understand. The book exposes students and readers to some fundamental content and essential methods of constructing mathematical proofs in the context of four main courses required for the mathematics major – probability, linear algebra, real analysis, and abstract algebra. Following an optional foundational chapter on background material, four short chapters, each focusing on a particular course, provide a slow-paced but rigorous introduction. Students get a preview of the discipline, its focus, language, mathematical objects of interest, and methods of proof commonly used in the field. The organization of the book helps to focus on the specific methods of proof and main ideas that will be emphasized in each of the courses. The text may also be used as a review tool at the end of each course and for readers who want to learn the language and scope of the broad disciplines of linear algebra, abstract algebra, real analysis, and probability, before transitioning to these courses.
Download or read book What is Mathematics written by Richard Courant and published by . This book was released on 1996 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. "Lucid . . . easily understandable".--Albert Einstein. 301 linecuts.
Download or read book Rediscovering Mathematics written by Shai Simonson and published by American Mathematical Soc.. This book was released on 2019-07-30 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rediscovering Mathematics is aimed at a general audience and addresses the question of how best to teach and study mathematics. The book attempts to bring the exciting and dynamic world of mathematics to a non-technical audience. With so much focus today on how best to educate the new generation and make mathematics less rote and more interactive, this book is an eye-opening experience for many people who suffered with dull math teachers and curricula. Rediscovering Mathematics is an eclectic collection of mathematical topics and puzzles aimed at talented youngsters and inquisitive adults who want to expand their view of mathematics. By focusing on problem solving, and discouraging rote memorization, the book shows how to learn and teach mathematics through investigation, experimentation, and discovery. Rediscovering Mathematics is also an excellent text for training math teachers at all levels. Topics range in difficulty and cover a wide range of historical periods, with some examples demonstrating how to uncover mathematics in everyday life, including: number theory and its application to secure communication over the Internet, the algebraic and combinatorial work of a medieval mathematician Rabbi, and applications of probability to sports, casinos, and gambling. Rediscovering Mathematics provides a fresh view of mathematics for those who already like the subject, and offers a second chance for those who think they don't.
Download or read book Foundations of Higher Mathematics written by Daniel M. Fendel and published by Addison Wesley. This book was released on 1990 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Higher Mathematics: Exploration and Proof is the ideal text to bridge the crucial gap between the standard calculus sequence and upper division mathematics courses. The book takes a fresh approach to the subject: it asks students to explore mathematical principles on their own and challenges them to think like mathematicians. Two unique features-an exploration approach to mathematics and an intuitive and integrated presentation of logic based on predicate calculus-distinguish the book from the competition. Both features enable students to own the mathematics they're working on. As a result, your students develop a stronger motivation to tackle upper-level courses and gain a deeper understanding of concepts presented.
Download or read book Proofs and Fundamentals written by Ethan D. Bloch and published by Springer Science & Business Media. This book was released on 2011-02-15 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.
Download or read book Discovering Higher Mathematics written by Alan Levine and published by Academic Press. This book was released on 1999-10-29 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Funded by a National Science Foundation grant, Discovering Higher Mathematics emphasizes four main themes that are essential components of higher mathematics: experimentation, conjecture, proof, and generalization. The text is intended for use in bridge or transition courses designed to prepare students for the abstraction of higher mathematics. Students in these courses have normally completed the calculus sequence and are planning to take advanced mathematics courses such as algebra, analysis and topology. The transition course is taken to prepare students for these courses by introducing them to the processes of conjecture and proof concepts which are typically not emphasized in calculus, but are critical components of advanced courses. * Constructed around four key themes: Experimentation, Conjecture, Proof, and Generalization * Guidelines for effective mathematical thinking, covering a variety of interrelated topics * Numerous problems and exercises designed to reinforce the key themes
Download or read book Higher Mathematics written by I. Suvorov and published by . This book was released on 2002-09-01 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by an experienced Soviet teacher, Candidate of Physico-mathematical sciences, I. F. Suvorov, this text represents a concise course in higher mathematics, with problems and exercises arranged in the same sequence as the theoretical material. It is designed for intermediate and higher educational institutions with short courses of mathematics and also for self-instruction.