EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book 5 FIVE DATA SCIENCE PROJECTS FOR ANALYSIS  CLASSIFICATION  PREDICTION  AND SENTIMENT ANALYSIS WITH PYTHON GUI

Download or read book 5 FIVE DATA SCIENCE PROJECTS FOR ANALYSIS CLASSIFICATION PREDICTION AND SENTIMENT ANALYSIS WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-04-29 with total page 979 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: SUPERMARKET SALES ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of the growth of supermarkets with high market competitions in most populated cities. The dataset is one of the historical sales of supermarket company which has recorded in 3 different branches for 3 months data. Predictive data analytics methods are easy to apply with this dataset. Attribute information in the dataset are as follows: Invoice id: Computer generated sales slip invoice identification number; Branch: Branch of supercenter (3 branches are available identified by A, B and C); City: Location of supercenters; Customer type: Type of customers, recorded by Members for customers using member card and Normal for without member card; Gender: Gender type of customer; Product line: General item categorization groups - Electronic accessories, Fashion accessories, Food and beverages, Health and beauty, Home and lifestyle, Sports and travel; Unit price: Price of each product in $; Quantity: Number of products purchased by customer; Tax: 5% tax fee for customer buying; Total: Total price including tax; Date: Date of purchase (Record available from January 2019 to March 2019); Time: Purchase time (10am to 9pm); Payment: Payment used by customer for purchase (3 methods are available – Cash, Credit card and Ewallet); COGS: Cost of goods sold; Gross margin percentage: Gross margin percentage; Gross income: Gross income; and Rating: Customer stratification rating on their overall shopping experience (On a scale of 1 to 10). In this project, you will perform predicting rating using machine learning. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DETECTING CYBERBULLYING TWEETS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI As social media usage becomes increasingly prevalent in every age group, a vast majority of citizens rely on this essential medium for day-to-day communication. Social media’s ubiquity means that cyberbullying can effectively impact anyone at any time or anywhere, and the relative anonymity of the internet makes such personal attacks more difficult to stop than traditional bullying. On April 15th, 2020, UNICEF issued a warning in response to the increased risk of cyberbullying during the COVID-19 pandemic due to widespread school closures, increased screen time, and decreased face-to-face social interaction. The statistics of cyberbullying are outright alarming: 36.5% of middle and high school students have felt cyberbullied and 87% have observed cyberbullying, with effects ranging from decreased academic performance to depression to suicidal thoughts. In light of all of this, this dataset contains more than 47000 tweets labelled according to the class of cyberbullying: Age; Ethnicity; Gender; Religion; Other type of cyberbullying; and Not cyberbullying. The data has been balanced in order to contain ~8000 of each class. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, LSTM, and CNN. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: HIGHER EDUCATION STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project was collected from the Faculty of Engineering and Faculty of Educational Sciences students in 2019. The purpose is to predict students' end-of-term performances using ML techniques. Attribute information in the dataset are as follows: Student ID; Student Age (1: 18-21, 2: 22-25, 3: above 26); Sex (1: female, 2: male); Graduated high-school type: (1: private, 2: state, 3: other); Scholarship type: (1: None, 2: 25%, 3: 50%, 4: 75%, 5: Full); Additional work: (1: Yes, 2: No); Regular artistic or sports activity: (1: Yes, 2: No); Do you have a partner: (1: Yes, 2: No); Total salary if available (1: USD 135-200, 2: USD 201-270, 3: USD 271-340, 4: USD 341-410, 5: above 410); Transportation to the university: (1: Bus, 2: Private car/taxi, 3: bicycle, 4: Other); Accommodation type in Cyprus: (1: rental, 2: dormitory, 3: with family, 4: Other); Mother's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Father's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Number of sisters/brothers (if available): (1: 1, 2:, 2, 3: 3, 4: 4, 5: 5 or above); Parental status: (1: married, 2: divorced, 3: died - one of them or both); Mother's occupation: (1: retired, 2: housewife, 3: government officer, 4: private sector employee, 5: self-employment, 6: other); Father's occupation: (1: retired, 2: government officer, 3: private sector employee, 4: self-employment, 5: other); Weekly study hours: (1: None, 2: <5 hours, 3: 6-10 hours, 4: 11-20 hours, 5: more than 20 hours); Reading frequency (non-scientific books/journals): (1: None, 2: Sometimes, 3: Often); Reading frequency (scientific books/journals): (1: None, 2: Sometimes, 3: Often); Attendance to the seminars/conferences related to the department: (1: Yes, 2: No); Impact of your projects/activities on your success: (1: positive, 2: negative, 3: neutral); Attendance to classes (1: always, 2: sometimes, 3: never); Preparation to midterm exams 1: (1: alone, 2: with friends, 3: not applicable); Preparation to midterm exams 2: (1: closest date to the exam, 2: regularly during the semester, 3: never); Taking notes in classes: (1: never, 2: sometimes, 3: always); Listening in classes: (1: never, 2: sometimes, 3: always); Discussion improves my interest and success in the course: (1: never, 2: sometimes, 3: always); Flip-classroom: (1: not useful, 2: useful, 3: not applicable); Cumulative grade point average in the last semester (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Expected Cumulative grade point average in the graduation (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Course ID; and OUTPUT: Grade (0: Fail, 1: DD, 2: DC, 3: CC, 4: CB, 5: BB, 6: BA, 7: AA). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: COMPANY BANKRUPTCY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset was collected from the Taiwan Economic Journal for the years 1999 to 2009. Company bankruptcy was defined based on the business regulations of the Taiwan Stock Exchange. Attribute information in the dataset are as follows: Y - Bankrupt?: Class label; X1 - ROA(C) before interest and depreciation before interest: Return On Total Assets(C); X2 - ROA(A) before interest and % after tax: Return On Total Assets(A); X3 - ROA(B) before interest and depreciation after tax: Return On Total Assets(B); X4 - Operating Gross Margin: Gross Profit/Net Sales; X5 - Realized Sales Gross Margin: Realized Gross Profit/Net Sales; X6 - Operating Profit Rate: Operating Income/Net Sales; X7 - Pre-tax net Interest Rate: Pre-Tax Income/Net Sales; X8 - After-tax net Interest Rate: Net Income/Net Sales; X9 - Non-industry income and expenditure/revenue: Net Non-operating Income Ratio; X10 - Continuous interest rate (after tax): Net Income-Exclude Disposal Gain or Loss/Net Sales; X11 - Operating Expense Rate: Operating Expenses/Net Sales; X12 - Research and development expense rate: (Research and Development Expenses)/Net Sales X13 - Cash flow rate: Cash Flow from Operating/Current Liabilities; X14 - Interest-bearing debt interest rate: Interest-bearing Debt/Equity; X15 - Tax rate (A): Effective Tax Rate; X16 - Net Value Per Share (B): Book Value Per Share(B); X17 - Net Value Per Share (A): Book Value Per Share(A); X18 - Net Value Per Share (C): Book Value Per Share(C); X19 - Persistent EPS in the Last Four Seasons: EPS-Net Income; X20 - Cash Flow Per Share; X21 - Revenue Per Share (Yuan ¥): Sales Per Share; X22 - Operating Profit Per Share (Yuan ¥): Operating Income Per Share; X23 - Per Share Net profit before tax (Yuan ¥): Pretax Income Per Share; X24 - Realized Sales Gross Profit Growth Rate; X25 - Operating Profit Growth Rate: Operating Income Growth; X26 - After-tax Net Profit Growth Rate: Net Income Growth; X27 - Regular Net Profit Growth Rate: Continuing Operating Income after Tax Growth; X28 - Continuous Net Profit Growth Rate: Net Income-Excluding Disposal Gain or Loss Growth; X29 - Total Asset Growth Rate: Total Asset Growth; X30 - Net Value Growth Rate: Total Equity Growth; X31 - Total Asset Return Growth Rate Ratio: Return on Total Asset Growth; X32 - Cash Reinvestment %: Cash Reinvestment Ratio X33 - Current Ratio; X34 - Quick Ratio: Acid Test; X35 - Interest Expense Ratio: Interest Expenses/Total Revenue; X36 - Total debt/Total net worth: Total Liability/Equity Ratio; X37 - Debt ratio %: Liability/Total Assets; X38 - Net worth/Assets: Equity/Total Assets; X39 - Long-term fund suitability ratio (A): (Long-term Liability+Equity)/Fixed Assets; X40 - Borrowing dependency: Cost of Interest-bearing Debt; X41 - Contingent liabilities/Net worth: Contingent Liability/Equity; X42 - Operating profit/Paid-in capital: Operating Income/Capital; X43 - Net profit before tax/Paid-in capital: Pretax Income/Capital; X44 - Inventory and accounts receivable/Net value: (Inventory+Accounts Receivables)/Equity; X45 - Total Asset Turnover; X46 - Accounts Receivable Turnover; X47 - Average Collection Days: Days Receivable Outstanding; X48 - Inventory Turnover Rate (times); X49 - Fixed Assets Turnover Frequency; X50 - Net Worth Turnover Rate (times): Equity Turnover; X51 - Revenue per person: Sales Per Employee; X52 - Operating profit per person: Operation Income Per Employee; X53 - Allocation rate per person: Fixed Assets Per Employee; X54 - Working Capital to Total Assets; X55 - Quick Assets/Total Assets; X56 - Current Assets/Total Assets; X57 - Cash/Total Assets; X58 - Quick Assets/Current Liability; X59 - Cash/Current Liability; X60 - Current Liability to Assets; X61 - Operating Funds to Liability; X62 - Inventory/Working Capital; X63 - Inventory/Current Liability X64 - Current Liabilities/Liability; X65 - Working Capital/Equity; X66 - Current Liabilities/Equity; X67 - Long-term Liability to Current Assets; X68 - Retained Earnings to Total Assets; X69 - Total income/Total expense; X70 - Total expense/Assets; X71 - Current Asset Turnover Rate: Current Assets to Sales; X72 - Quick Asset Turnover Rate: Quick Assets to Sales; X73 - Working capitcal Turnover Rate: Working Capital to Sales; X74 - Cash Turnover Rate: Cash to Sales; X75 - Cash Flow to Sales; X76 - Fixed Assets to Assets; X77 - Current Liability to Liability; X78 - Current Liability to Equity; X79 - Equity to Long-term Liability; X80 - Cash Flow to Total Assets; X81 - Cash Flow to Liability; X82 - CFO to Assets; X83 - Cash Flow to Equity; X84 - Current Liability to Current Assets; X85 - Liability-Assets Flag: 1 if Total Liability exceeds Total Assets, 0 otherwise; X86 - Net Income to Total Assets; X87 - Total assets to GNP price; X88 - No-credit Interval; X89 - Gross Profit to Sales; X90 - Net Income to Stockholder's Equity; X91 - Liability to Equity; X92 - Degree of Financial Leverage (DFL); X93 - Interest Coverage Ratio (Interest expense to EBIT); X94 - Net Income Flag: 1 if Net Income is Negative for the last two years, 0 otherwise; and X95 - Equity to Liabilitys. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: DATA SCIENCE FOR RAIN CLASSIFICATION AND PREDICTION WITH PYTHON GUI This dataset contains about 10 years of daily weather observations from many locations across Australia. RainTomorrow is the target variable to predict. You will determine rain or not in the next day. This column is Yes if the rain for that day was 1mm or more. Observations were drawn from numerous weather stations. The daily observations are available from http://www.bom.gov.au/climate/data. The dataset contains 23 attributes. Some of them are as follows: About some of them are: DATE - The date of observation; LOCATION - The common name of the location of the weather station; MINTEMP - The minimum temperature in degrees celsius; MAXTEMP - The maximum temperature in degrees celsius; RAINFALL - The amount of rainfall recorded for the day in mm; EVAPORATION - The so-called Class A pan evaporation (mm) in the 24 hours to 9am; SUNSHINE - The number of hours of bright sunshine in the day; WINDGUESTDIR - The direction of the strongest wind gust in the 24 hours to midnight; WINDGUESTSPEED- The speed (km/h) of the strongest wind gust in the 24 hours to midnight; and WINDDIR9AM - Direction of the wind at 9am. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.

Book THREE PROJECTS  Sentiment Analysis and Prediction Using Machine Learning and Deep Learning with Python GUI

Download or read book THREE PROJECTS Sentiment Analysis and Prediction Using Machine Learning and Deep Learning with Python GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-03-21 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Twitter data used in this project was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service"). This data was originally posted by Crowdflower last February and includes tweets about 6 major US airlines. Additionally, Crowdflower had their workers extract the sentiment from the tweet as well as what the passenger was dissapointed about if the tweet was negative. The information of main attributes for this project are as follows: airline_sentiment : Sentiment classification.(positivie, neutral, and negative); negativereason : Reason selected for the negative opinion; airline : Name of 6 US Airlines('Delta', 'United', 'Southwest', 'US Airways', 'Virgin America', 'American'); and text : Customer's opinion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOTEL REVIEW: SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The data used in this project is the data published by Anurag Sharma about hotel reviews that were given by costumers. The data is given in two files, a train and test. The train.csv is the training data, containing unique User_ID for each entry with the review entered by a costumer and the browser and device used. The target variable is Is_Response, a variable that states whether the costumers was happy or not happy while staying in the hotel. This type of variable makes the project to a classification problem. The test.csv is the testing data, contains similar headings as the train data, without the target variable. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful. Attributes in the dataset are as follows: school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira); sex - student's sex (binary: 'F' - female or 'M' - male); age - student's age (numeric: from 15 to 22); address - student's home address type (binary: 'U' - urban or 'R' - rural); famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3); Pstatus - parent's cohabitation status (binary: 'T' - living together or 'A' - apart); Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Mjob - mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); Fjob - father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); reason - reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other'); guardian - student's guardian (nominal: 'mother', 'father' or 'other'); traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour); studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours); failures - number of past class failures (numeric: n if 1<=n<3, else 4); schoolsup - extra educational support (binary: yes or no); famsup - family educational support (binary: yes or no); paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no); activities - extra-curricular activities (binary: yes or no); nursery - attended nursery school (binary: yes or no); higher - wants to take higher education (binary: yes or no); internet - Internet access at home (binary: yes or no); romantic - with a romantic relationship (binary: yes or no); famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent); freetime - free time after school (numeric: from 1 - very low to 5 - very high); goout - going out with friends (numeric: from 1 - very low to 5 - very high); Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high); Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high); health - current health status (numeric: from 1 - very bad to 5 - very good); absences - number of school absences (numeric: from 0 to 93); G1 - first period grade (numeric: from 0 to 20); G2 - second period grade (numeric: from 0 to 20); and G3 - final grade (numeric: from 0 to 20, output target). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.

Book TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI

Download or read book TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-26 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we explored a code implementation for sentiment analysis using machine learning models, including XGBoost, LightGBM, and LSTM. The code aimed to build, train, and evaluate these models on Twitter data to classify sentiments. Throughout the project, we gained insights into the key steps involved and observed the findings and functionalities of the code. Sentiment analysis is a vital task in natural language processing, and the code was to give a comprehensive approach to tackle it. The implementation began by checking if pre-trained models for XGBoost and LightGBM existed. If available, the models were loaded; otherwise, new models were built and trained. This approach allowed for reusability of trained models, saving time and effort in subsequent runs. Similarly, the code checked if preprocessed data for LSTM existed. If not, it performed tokenization and padding on the text data, splitting it into train, test, and validation sets. The preprocessed data was saved for future use. The code also provided a function to build and train the LSTM model. It defined the model architecture using the Keras Sequential API, incorporating layers like embedding, convolutional, max pooling, bidirectional LSTM, dropout, and dense output. The model was compiled with appropriate loss and optimization functions. Training was carried out, with early stopping implemented to prevent overfitting. After training, the model summary was printed, and both the model and training history were saved for future reference. The train_lstm function ensured that the LSTM model was ready for prediction by checking the existence of preprocessed data and trained models. If necessary, it performed the required preprocessing and model building steps. The pred_lstm() function was responsible for loading the LSTM model and generating predictions for the test data. The function returned the predicted sentiment labels, allowing for further analysis and evaluation. To facilitate user interaction, the code included a functionality to choose the LSTM model for prediction. The choose_prediction_lstm() function was triggered when the user selected the LSTM option from a dropdown menu. It called the pred_lstm() function, performed evaluation tasks, and visualized the results. Confusion matrices and true vs. predicted value plots were generated to assess the model's performance. Additionally, the loss and accuracy history from training were plotted, providing insights into the model's learning process. In conclusion, this project provided a comprehensive overview of sentiment analysis using machine learning models. The code implementation showcased the steps involved in building, training, and evaluating models like XGBoost, LightGBM, and LSTM. It emphasized the importance of data preprocessing, model building, and evaluation in sentiment analysis tasks. The code also demonstrated functionalities for reusing pre-trained models and saving preprocessed data, enhancing efficiency and ease of use. Through visualization techniques, such as confusion matrices and accuracy/loss curves, the code enabled a better understanding of the model's performance and learning dynamics. Overall, this project highlighted the practical aspects of sentiment analysis and illustrated how different machine learning models can be employed to tackle this task effectively.

Book Data Science and Machine Learning

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Book Text Analytics with Python

Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2016-11-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data

Book Deep Learning with Python

Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance

Book Hands On Data Science and Python Machine Learning

Download or read book Hands On Data Science and Python Machine Learning written by Frank Kane and published by Packt Publishing Ltd. This book was released on 2017-07-31 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.

Book Data Science and Big Data Analytics

Download or read book Data Science and Big Data Analytics written by EMC Education Services and published by John Wiley & Sons. This book was released on 2015-01-05 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Book The Data Science Design Manual

Download or read book The Data Science Design Manual written by Steven S. Skiena and published by Springer. This book was released on 2017-07-01 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)

Book Foundations of Data Science

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Book Artificial Intelligence with Python

Download or read book Artificial Intelligence with Python written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2017-01-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.

Book Programming Collective Intelligence

Download or read book Programming Collective Intelligence written by Toby Segaran and published by "O'Reilly Media, Inc.". This book was released on 2007-08-16 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect

Book Data Science at the Command Line

Download or read book Data Science at the Command Line written by Jeroen Janssens and published by "O'Reilly Media, Inc.". This book was released on 2021-08-17 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thoroughly revised guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small yet powerful command-line tools to quickly obtain, scrub, explore, and model your data. To get you started, author Jeroen Janssens provides a Docker image packed with over 100 Unix power tools--useful whether you work with Windows, macOS, or Linux. You'll quickly discover why the command line is an agile, scalable, and extensible technology. Even if you're comfortable processing data with Python or R, you'll learn how to greatly improve your data science workflow by leveraging the command line's power. This book is ideal for data scientists, analysts, engineers, system administrators, and researchers. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on text, CSV, HTML, XML, and JSON files Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow Create your own tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines Model data with dimensionality reduction, regression, and classification algorithms Leverage the command line from Python, Jupyter, R, RStudio, and Apache Spark

Book Practical Data Science with Hadoop and Spark

Download or read book Practical Data Science with Hadoop and Spark written by Ofer Mendelevitch and published by Addison-Wesley Professional. This book was released on 2016-12-08 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Complete Guide to Data Science with Hadoop—For Technical Professionals, Businesspeople, and Students Demand is soaring for professionals who can solve real data science problems with Hadoop and Spark. Practical Data Science with Hadoop® and Spark is your complete guide to doing just that. Drawing on immense experience with Hadoop and big data, three leading experts bring together everything you need: high-level concepts, deep-dive techniques, real-world use cases, practical applications, and hands-on tutorials. The authors introduce the essentials of data science and the modern Hadoop ecosystem, explaining how Hadoop and Spark have evolved into an effective platform for solving data science problems at scale. In addition to comprehensive application coverage, the authors also provide useful guidance on the important steps of data ingestion, data munging, and visualization. Once the groundwork is in place, the authors focus on specific applications, including machine learning, predictive modeling for sentiment analysis, clustering for document analysis, anomaly detection, and natural language processing (NLP). This guide provides a strong technical foundation for those who want to do practical data science, and also presents business-driven guidance on how to apply Hadoop and Spark to optimize ROI of data science initiatives. Learn What data science is, how it has evolved, and how to plan a data science career How data volume, variety, and velocity shape data science use cases Hadoop and its ecosystem, including HDFS, MapReduce, YARN, and Spark Data importation with Hive and Spark Data quality, preprocessing, preparation, and modeling Visualization: surfacing insights from huge data sets Machine learning: classification, regression, clustering, and anomaly detection Algorithms and Hadoop tools for predictive modeling Cluster analysis and similarity functions Large-scale anomaly detection NLP: applying data science to human language

Book Practical Data Science with Python

Download or read book Practical Data Science with Python written by Nathan George and published by Packt Publishing Ltd. This book was released on 2021-09-30 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to effectively manage data and execute data science projects from start to finish using Python Key FeaturesUnderstand and utilize data science tools in Python, such as specialized machine learning algorithms and statistical modelingBuild a strong data science foundation with the best data science tools available in PythonAdd value to yourself, your organization, and society by extracting actionable insights from raw dataBook Description Practical Data Science with Python teaches you core data science concepts, with real-world and realistic examples, and strengthens your grip on the basic as well as advanced principles of data preparation and storage, statistics, probability theory, machine learning, and Python programming, helping you build a solid foundation to gain proficiency in data science. The book starts with an overview of basic Python skills and then introduces foundational data science techniques, followed by a thorough explanation of the Python code needed to execute the techniques. You'll understand the code by working through the examples. The code has been broken down into small chunks (a few lines or a function at a time) to enable thorough discussion. As you progress, you will learn how to perform data analysis while exploring the functionalities of key data science Python packages, including pandas, SciPy, and scikit-learn. Finally, the book covers ethics and privacy concerns in data science and suggests resources for improving data science skills, as well as ways to stay up to date on new data science developments. By the end of the book, you should be able to comfortably use Python for basic data science projects and should have the skills to execute the data science process on any data source. What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and essential machine learning algorithms, such as random forests and boosted modelsEvaluate model performanceCompare and understand different machine learning methodsInteract with Excel spreadsheets through PythonCreate automated data science reports through PythonGet to grips with text analytics techniquesWho this book is for The book is intended for beginners, including students starting or about to start a data science, analytics, or related program (e.g. Bachelor’s, Master’s, bootcamp, online courses), recent college graduates who want to learn new skills to set them apart in the job market, professionals who want to learn hands-on data science techniques in Python, and those who want to shift their career to data science. The book requires basic familiarity with Python. A "getting started with Python" section has been included to get complete novices up to speed.

Book Deep Learning With Python

Download or read book Deep Learning With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-05-13 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.

Book Introduction to Data Science and Machine Learning

Download or read book Introduction to Data Science and Machine Learning written by Keshav Sud and published by BoD – Books on Demand. This book was released on 2020-03-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science and Machine Learning has been created with the goal to provide beginners seeking to learn about data science, data enthusiasts, and experienced data professionals with a deep understanding of data science application development using open-source programming from start to finish. This book is divided into four sections: the first section contains an introduction to the book, the second covers the field of data science, software development, and open-source based embedded hardware; the third section covers algorithms that are the decision engines for data science applications; and the final section brings together the concepts shared in the first three sections and provides several examples of data science applications.