EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book 2008  Solved Problems in Electromagnetics

Download or read book 2008 Solved Problems in Electromagnetics written by S. A. Nasar and published by SciTech Publishing. This book was released on 2008 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This extremely valuable learning resource is for students of electromagnetics and those who wish to refresh and solidify their understanding of its challenging applications. Problem-solving drills help develop confidence, but few textbooks offer the answers, never mind the complete solutions to their chapter exercises. In this text, noted author Professor Syed Nasar has divided the book's problems into topic areas similar to a textbook and presented a wide array of problems, followed immediately by their solutions.

Book 2008  Solved Problems In Electromagnetics

Download or read book 2008 Solved Problems In Electromagnetics written by Syed A. Nasar and published by . This book was released on 2008 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book ELECTROMAGNETISM

    Book Details:
  • Author : ASHUTOSH PRAMANIK
  • Publisher : PHI Learning Pvt. Ltd.
  • Release : 2012-09-03
  • ISBN : 8120346335
  • Pages : 922 pages

Download or read book ELECTROMAGNETISM written by ASHUTOSH PRAMANIK and published by PHI Learning Pvt. Ltd.. This book was released on 2012-09-03 with total page 922 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition of the book contains more than 60 new problems over and above the original 480 problems of the Second Edition. The additional problems cover the whole range of new topics which will also be introduced in the third edition of the author’s main textbook titled Electromagnetism: Theory and Applications. There are some other new problems necessary to further enhance the understanding of the topics of importance already existing in the book. There has been no change in the philosophy of this book. It has been designed to serve as a companion volume to the main text to help students gain a thorough quantitative understanding of EM concepts that are somewhat difficult to learn. The problems included, as a result of the author’s long industrial and academic experience, illuminate the concepts developed in the main text. Besides meeting the needs of undergraduate students of electrical engineering and postgraduate students and researchers in physics, the book will also be immensely useful to engineers and applied physicists in industry. WHAT IS NEW TO THIS EDITION? 1. A number of new problems on evaluation of a.c. resistance and reactance due to skin effect in cylindrical transmission line configurations, for which the cylindrical polar coordinate system cannot be used. 2. New problems on design and optimization of permanent magnets (now being used in the development of new permanent magnet machines) by using Fröhlich–Kennelly equation for representing the demagnetizing curve and Evershed criterion for optimizing the magnet dimensions and its material volume. 3. Some problems on applications of vector analysis to different geometrical configurations. 4. Some problems on Electrostatics and Magnetostatics in which the method of images has been used as auxiliary support. 5. Nearly 18–20 new problems in the chapter on Electromagnetic Induction making it fully comprehensive and covering all facets of electromagnetic induction. This chapter now contains more than 60 solved problems, none of which are of the formula substitution type, and include problems ranging from annular homopolar machines to phenomenon of pinch effect, identification and separation of flux-linkage as well as flux cutting effects, etc. 6. Some problem on Electromagnetic Waves dealing with surface current speed. 7. Problems on Lorentz transformation in the chapter titled Electromagnetism and Special Relativity.

Book Graphene Optics

    Book Details:
  • Author : Ricardo A Depine
  • Publisher : Morgan & Claypool Publishers
  • Release : 2017-01-01
  • ISBN : 1681743108
  • Pages : 183 pages

Download or read book Graphene Optics written by Ricardo A Depine and published by Morgan & Claypool Publishers. This book was released on 2017-01-01 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a rigorous but concise macroscopic description of the interaction between electromagnetic radiation and structures containing graphene sheets (two-dimensional structures). It presents canonical problems with translational invariant geometries, in which the solution of the original vectorial problem can be reduced to the treatment of two scalar problems, corresponding to two basic polarization modes. The book includes computational problems and makes use of the Python programming language to make numerical calculations accessible to any science student. Many figures within are accompanied by Python scripts.

Book Electromagnetic Field Theory

Download or read book Electromagnetic Field Theory written by Markus Zahn and published by . This book was released on 2003 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electromagnetics for Engineering Students  Part 2

Download or read book Electromagnetics for Engineering Students Part 2 written by Sameir M. Ali Hamed and published by Bentham Science Publishers. This book was released on 2018-04-09 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagmetics for Engineering Students is a textbook in two parts, Part I and II, that cover all topics of electromagnetics needed for undergraduate students from vector analysis to antenna principles. In both parts of the book, the topics are presented in sufficient details such that the students will follow the analytical development easily. Each chapter is supported by many illustrative examples, solved problems, and the end of chapter problems to explain the principles of the topics and enhance the knowledge of the student. There are a total of 681 problems in the both parts of the book as follows: 162 illustrative examples, 88 solved problems, and 431 end of chapter problems. This part is a continuation of Part I and focuses on the application of Maxwell's equations and the concepts that are covered in Part I to analyze the characteristics of wave propagation in half-space and bounded media including metamaterials. Moreover, a chapter has been devoted to the topic of antennas to provide readers with the fundamental concepts related to antenna engineering. The key features of this part: • In addition to the coverage of classical topics in electromagnetic normally covered in the similar available texts, this part of the book adds some advanced concepts and topics such as: • Application of multi-pole expansion for vector potentials. • More detailed analysis on the topic of waveguides including circular waveguides. • Refraction through metamaterials and the concept of negative refractive index. • Detailed and easy-to follow presentation of mathematical analyses and problems. • An appendix of mathematical formulae and functions.

Book MATLAB based Finite Element Programming in Electromagnetic Modeling

Download or read book MATLAB based Finite Element Programming in Electromagnetic Modeling written by Özlem Özgün and published by CRC Press. This book was released on 2018-09-03 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.

Book The Multilevel Fast Multipole Algorithm  MLFMA  for Solving Large Scale Computational Electromagnetics Problems

Download or read book The Multilevel Fast Multipole Algorithm MLFMA for Solving Large Scale Computational Electromagnetics Problems written by Ozgur Ergul and published by John Wiley & Sons. This book was released on 2014-04-22 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examples Covers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objects Discusses applications including scattering from airborne targets, scattering from red blood cells, radiation from antennas and arrays, metamaterials etc. Is written by authors who have more than 25 years experience on the development and implementation of MLFMA The book will be useful for post-graduate students, researchers, and academics, studying in the areas of computational electromagnetics, numerical analysis, and computer science, and who would like to implement and develop rigorous simulation environments based on MLFMA.

Book Electromagnetic Fields  Theory and Problems

Download or read book Electromagnetic Fields Theory and Problems written by Murthy, T.V.S. Arun and published by S. Chand Publishing. This book was released on 2008 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic Fields

Book Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain

Download or read book Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain written by Y. Zhang and published by John Wiley & Sons. This book was released on 2009-06-29 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide to parallelizing cem codes The future of computational electromagnetics is changing drastically as the new generation of computer chips evolves from single-core to multi-core. The burden now falls on software programmers to revamp existing codes and add new functionality to enable computational codes to run efficiently on this new generation of multi-core CPUs. In this book, you'll learn everything you need to know to deal with multi-core advances in chip design by employing highly efficient parallel electromagnetic code. Focusing only on the Method of Moments (MoM), the book covers: In-Core and Out-of-Core LU Factorization for Solving a Matrix Equation A Parallel MoM Code Using RWG Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers A Parallel MoM Code Using Higher-Order Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers Turning the Performance of a Parallel Integral Equation Solver Refinement of the Solution Using the Conjugate Gradient Method A Parallel MoM Code Using Higher-Order Basis Functions and Plapack-Based In-Core and Out-of-Core Solvers Applications of the Parallel Frequency Domain Integral Equation Solver Appendices are provided with detailed information on the various computer platforms used for computation; a demo shows you how to compile ScaLAPACK and PLAPACK on the Windows® operating system; and a demo parallel source code is available to solve the 2D electromagnetic scattering problems. Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain is indispensable reading for computational code designers, computational electromagnetics researchers, graduate students, and anyone working with CEM software.

Book 2000 Solved Problems in Electromagnetics

Download or read book 2000 Solved Problems in Electromagnetics written by Syed A. Nasar and published by McGraw-Hill Companies. This book was released on 1992 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Satellite Signal Propagation  Impairments and Mitigation

Download or read book Satellite Signal Propagation Impairments and Mitigation written by Rajat Acharya and published by Academic Press. This book was released on 2017-08-09 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Satellite Signal Propagation, Impairments and Mitigation covers issues related to satellite link design. The book develops every concept from elementary physics, covering the basics of signal propagation from Maxwell's equations and then gradually developing the physical reasons for impairments. It emphasizes the unique concepts for each involved process, based on their physics, and explains how they form the determining factors for the related suitable engineering technique for mitigation. Every basic principle is followed by mathematical substantiation with an explanation of the physics behind the equations. - Covers the basics of signal propagation, starting from Maxwell's equations and then gradually developing the physical reasons for the impairments - Includes different important propagation experiments conducted and detailed in the Appendix - Employs the power of MATLAB® as both a visualization and problem-solving tool - Provides MATLAB scripts for simulation exercises

Book Theory and Applications of Applied Electromagnetics

Download or read book Theory and Applications of Applied Electromagnetics written by Ping Jack Soh and published by Springer. This book was released on 2016-07-04 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, experts from academia and industry present the latest advances in scientific theory relating to applied electromagnetics and examine current and emerging applications particularly within the fields of electronics, communications, and computer technology. The book is based on presentations delivered at APPEIC 2015, the 2nd Applied Electromagnetic International Conference, held in Krabi, Thailand in December 2015. The conference provided an ideal platform for researchers and specialists to deliver both theoretically and practically oriented contributions on a wide range of topics relevant to the theme of nurturing applied electromagnetics for human technology. Many novel aspects were addressed, and the contributions selected for this book highlight the relevance of advances in applied electromagnetics to a variety of industrial engineering problems and identify exciting futu re directions for research.

Book Electromagnetic Modeling and Simulation

Download or read book Electromagnetic Modeling and Simulation written by Levent Sevgi and published by John Wiley & Sons. This book was released on 2014-03-13 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book presents simple, easy-to-use, but effective short codes as well as virtual tools that can be used by electrical, electronic, communication, and computer engineers in a broad range of electrical engineering problems Electromagnetic modeling is essential to the design and modeling of antenna, radar, satellite, medical imaging, and other applications. In this book, author Levent Sevgi explains techniques for solving real-time complex physical problems using MATLAB-based short scripts and comprehensive virtual tools. Unique in coverage and tutorial approach, Electromagnetic Modeling and Simulation covers fundamental analytical and numerical models that are widely used in teaching, research, and engineering designs—including mode and ray summation approaches with the canonical 2D nonpenetrable parallel plate waveguide as well as FDTD, MoM, and SSPE scripts. The book also establishes an intelligent balance among the essentials of EM MODSIM: The Problem (the physics), The Theory and Models (mathematical background and analytical solutions), and The Simulations (code developing plus validation, verification, and calibration). Classroom tested in graduate-level and short courses, Electromagnetic Modeling and Simulation: Clarifies concepts through numerous worked problems and quizzes provided throughout the book Features valuable MATLAB-based, user-friendly, effective engineering and research virtual design tools Includes sample scenarios and video clips recorded during characteristic simulations that visually impact learning—available on wiley.com Provides readers with their first steps in EM MODSIM as well as tools for medium and high-level code developers and users Electromagnetic Modeling and Simulation thoroughly covers the physics, mathematical background, analytical solutions, and code development of electromagnetic modeling, making it an ideal resource for electrical engineers and researchers.

Book Ultra Wideband  Short Pulse Electromagnetics 9

Download or read book Ultra Wideband Short Pulse Electromagnetics 9 written by Frank Sabath and published by Springer Science & Business Media. This book was released on 2010-06-17 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling techniques, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, broadband systems and components. This book serves as a state-of-the-art reference for scientists and engineers working in these applications areas.

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book Fundamentals of Electromagnetics with MATLAB

Download or read book Fundamentals of Electromagnetics with MATLAB written by Karl Erik Lonngren and published by SciTech Publishing. This book was released on 2007 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accompanying CD-ROM contains a MATLAB tutorial.