Download or read book 1 f Noise in Hafnium Based High k Gate Dielectric MOSFETs and a Review of Modeling written by Siva Prasad Devireddy and published by ProQuest. This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: For next generation MOSFETs, the constant field scaling rule dictates a reduction in the gate oxide thickness among other parameters. Consequently, gate leakage current becomes a serious issue with very thin SiO2 that is conventionally used as gate dielectric since it is the native oxide for Si substrate. This has driven an industry wide search for suitable alternate 'high-k' gate dielectric that has a high value of relative permittivity compared to SiO2 thereby presenting a physically thicker barrier for tunneling carriers while providing a high gate capacitance. Consequently, it is essential to study the properties of these novel materials and the interfaces that they form with the substrate, gate or other dielectrics in a multi-level stack. The main focus of this work is the 1/f noise that is specifically used as a characterization tool to evaluate the performance of high-k MOSFETs. Nevertheless, DC and split C-V characterization are done as well to obtain device performance parameters that are used in the noise analysis. At first, the room temperature 1/f noise characteristics are presented for n- and p-channel poly-Si gated MOSFETs with three different gate dielectrics- HfO2, Al2O3 (top layer)/HfO2 (bottom layer), HfAlOx. The devices had either 1 nm or 4 nm SiO2 interfacial layer, thus presenting an opportunity to understand the effects of interfacial layer thickness on noise and carrier mobility. In the initial study, the analysis of noise is done based on the Unified Flicker Noise Model. Next, a comparative study of 1/f noise behavior is presented for TaSiN (NMOS) and TiN (PMOS) gated MOSFETs with HfO2 gate dielectric and their poly-Si gated counterparts. Additionally, in TaSiN MOSFETs, the effect of the different deposition methods employed for interfacial layer formation on the overall device performance is studied. Finally, the 'Multi-Stack Unified Noise' model (MSUN) is proposed to better model/characterize the 1/f noise in multi-layered high-k MOSFETs. This model takes the non-uniform trap density profile and other physical properties of the constituent gate dielectrics into account. The MSUN model is shown to be in excellent agreement with the experimental data obtained on TaSiN/HfO 2/SiO2 MOSFETs in the 78-350 K range. Additionally, the MSUN model is expressed in terms of surface potential based parameters for inclusion in to the circuit simulators.
Download or read book Silicon Nitride Silicon Dioxide and Emerging Dielectrics 10 written by R. Ekwal Sah and published by The Electrochemical Society. This book was released on 2009 with total page 871 pages. Available in PDF, EPUB and Kindle. Book excerpt: The issue of ECS Transactions contains papers presented at the Tenth International Symposium on Silicon Nitride, Silicon Dioxide, and Alternate Emerging Dielectrics held in San Francisco on May 24-29, 2009. The papers address a very wide range of fabrication and characterization techniques, and applications of thin dielectric films in microelectronic and optoelectronic devices. More specific topics addressed by the papers include reliability, interface states, gate oxides, passivation, and dielctric breakdown.
Download or read book High k Gate Dielectric Materials written by Niladri Pratap Maity and published by CRC Press. This book was released on 2020-12-18 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components. This book presents a broad review of SiO2 materials, including a brief historical note of Moore’s law, followed by reliability issues of the SiO2 based MOS transistor. It goes on to discuss the transition of gate dielectrics with an EOT ~ 1 nm and a selection of high-k materials. A review of the various deposition techniques of different high-k films is also discussed. High-k dielectrics theories (quantum tunneling effects and interface engineering theory) and applications of different novel MOSFET structures, like tunneling FET, are also covered in this book. The volume also looks at the important issues in the future of CMOS technology and presents an analysis of interface charge densities with the high-k material tantalum pentoxide. The issue of CMOS VLSI technology with the high-k gate dielectric materials is covered as is the advanced MOSFET structure, with its working structure and modeling. This timely volume will prove to be a valuable resource on both the fundamentals and the successful integration of high-k dielectric materials in future IC technology.
Download or read book Atomic Layer Deposition for Semiconductors written by Cheol Seong Hwang and published by Springer Science & Business Media. This book was released on 2013-10-18 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
Download or read book Random Telegraph Signals in Semiconductor Devices written by Eddy Simoen and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Following their first observation in 1984, random telegraph signals (RTSs) were initially a purely scientific tool to study fundamental aspects of defects in semiconductor devices. As semiconductor devices move to the nanoscale however, RTSs have become an issue of major concern to the semiconductor industry, both in development of current technology, such as memory devices and logic circuits, as well as in future semiconductor devices beyond the silicon roadmap, such as nanowire, TFET and carbon nanotube-based devices. It has become clear that the reliability of state-of-the-art and future CMOS technology nodes is dominated by RTS and single trap phenomena, and so its understanding is of vital importance for the modelling and simulation of the operation and the expected lifetime of CMOS devices and circuits. It is the aim of this book to provide a comprehensive and up-to-date review of one of the most challenging issues facing the semiconductor industry, from the fundamentals of RTSs to applied technology."--Prové de l'editor.
Download or read book Fundamentals of III V Semiconductor MOSFETs written by Serge Oktyabrsky and published by Springer Science & Business Media. This book was released on 2010-03-16 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.
Download or read book Low Frequency Noise in Advanced MOS Devices written by Martin Haartman and published by Springer Science & Business Media. This book was released on 2007-08-23 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.
Download or read book Carrier mobility in advanced channel materials using alternative gate dielectrics written by Eylem Durgun Özben and published by Forschungszentrum Jülich. This book was released on 2014-03-20 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fundamentals of Bias Temperature Instability in MOS Transistors written by Souvik Mahapatra and published by Springer. This book was released on 2015-08-05 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also in Si FinFETs. The contents also include a detailed investigation of the gate insulator process dependence of BTI in differently processed SiON and HKMG MOSFETs. The book then goes on to discuss Reaction-Diffusion (RD) model to estimate generation of new traps for DC and AC NBTI stress and Transient Trap Occupancy Model (TTOM) to estimate charge occupancy of generated traps and their contribution to BTI degradation. Finally, a comprehensive NBTI modeling framework including TTOM enabled RD model and hole trapping to predict time evolution of BTI degradation and recovery during and after DC stress for different stress and recovery biases and temperature, during consecutive arbitrary stress and recovery cycles and during AC stress at different frequency and duty cycle. The contents of this book should prove useful to academia and professionals alike.
Download or read book International Aerospace Abstracts written by and published by . This book was released on 1989 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Recent Advances in Nanophotonics written by Mojtaba Kahrizi and published by BoD – Books on Demand. This book was released on 2020-11-26 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume brings together several recent research articles in the field of nanophotonics. The editors have arranged the chapters in three main parts: quantum devices, photonic devices, and semiconductor devices. The chapters cover a wide variety of scopes in those areas including principles of plasmonic, SPR, LSPR and their applications, graphene-based nanophotonic devices, generation of entangled photon and quantum dots, perovskite solar cells, photo-detachment and photoionization of two-electrons systems, diffusion and intermixing of atoms in semiconductor crystals, lattice and molecular elastic and inelastic scattering including surface-enhanced Raman Scattering and their applications. It is our sincerest hope that science and engineering students and researchers could benefit from the new ideas and recent advances in the field that are covered in this book.
Download or read book Compact Modeling written by Gennady Gildenblat and published by Springer Science & Business Media. This book was released on 2010-06-22 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
Download or read book Planar Double Gate Transistor written by Amara Amara and published by Springer Science & Business Media. This book was released on 2009-01-16 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until the 1990s, the reduction of the minimum feature sizes used to fabricate in- grated circuits, called “scaling”, has highlighted serious advantages as integration density, speed, power consumption, functionality and cost. Direct consequence was the decrease of cost-per-function, so the electronic productivity has largely progressed in this period. Another usually cited trend is the evolution of the in- gration density as expressed by the well-know Moore’s Law in 1975: the number of devices per chip doubles every 2 years. This evolution has allowed improving signi?cantly the circuit complexity, offering a great computing power in the case of microprocessor, for example. However, since few years, signi?cant issues appeared such as the increase of the circuit heating, device complexity, variability and dif?culties to improve the integration density. These new trends generate an important growth in development and production costs. Though is it, since 40 years, the evolution of the microelectronics always f- lowed the Moore’s law and each dif?culty has found a solution.
Download or read book Thermally Aware Design written by Yong Zhan and published by Now Publishers Inc. This book was released on 2008 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an overview of analysis and optimization techniques for thermally-aware chip design.
Download or read book High Permittivity Gate Dielectric Materials written by Samares Kar and published by Springer Science & Business Media. This book was released on 2013-06-25 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects." .
Download or read book Conductive Atomic Force Microscopy written by Mario Lanza and published by John Wiley & Sons. This book was released on 2017-12-04 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to summarize the applications of CAFM as the most important method in the study of electronic properties of materials and devices at the nanoscale. To provide a global perspective, the chapters are written by leading researchers and application scientists from all over the world and cover novel strategies, configurations and setups where new information will be obtained with the help of CAFM. With its substantial content and logical structure, this is a valuable reference for researchers working with CAFM or planning to use it in their own fields of research.
Download or read book High Dielectric Constant Materials written by Howard Huff and published by Springer Science & Business Media. This book was released on 2005 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues relating to the high-K gate dielectric are among the greatest challenges for the evolving International Technology Roadmap for Semiconductors (ITRS). More than just an historical overview, this book will assess previous and present approaches related to scaling the gate dielectric and their impact, along with the creative directions and forthcoming challenges that will define the future of gate dielectric scaling technology. Topics include: an extensive review of Moore's Law, the classical regime for SiO2 gate dielectrics; the transition to silicon oxynitride gate dielectrics; the transition to high-K gate dielectrics (including the drive towards equivalent oxide thickness in the single-digit nanometer regime); and future directions and issues for ultimate technology generation scaling. The vision, wisdom, and experience of the team of authors will make this book a timely, relevant, and interesting, resource focusing on fundamentals of the 45 nm Technology Generation and beyond.